Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840275 | PMC |
http://dx.doi.org/10.1152/ajplung.00068.2013 | DOI Listing |
Nat Struct Mol Biol
December 2024
Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
Calcium (Ca)-activated ion channels and lipid scramblases in the transmembrane protein 16 (TMEM16) family are structurally related to mechanosensitive ion channels in the TMEM63 and transmembrane channel-like (TMC) families. Members of this structurally related superfamily share similarities in gating transitions and serve a wide range of physiological functions, which is evident from their disease associations. The TMEM16, TMEM63 and TMC families include members with important functions in the cell membrane and/or intracellular organelles such as the endoplasmic reticulum, membrane contact sites, endosomes and lysosomes.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genoa, Italy.
In recent years, the elucidation of molecular mechanisms underlying lipid scrambling has raised significant attention to its implications in various physiological processes, such as blood coagulation, viral infection, cell fusion processes, and removal of apoptotic cells. This chapter focuses on a HEK293 cell-based assay tailored to assess the lipid scrambling activity of the Ca-activated scramblases of the TMEM16/Anoctamin family. It relies on the capacity of Annexin-V to detect the presence of negatively charged lipids and, in particular, phosphatidylserine, on the extracellular surface of the plasma membrane.
View Article and Find Full Text PDFElife
November 2024
Department of Biochemistry, Duke University School of Medicine, Durham, United States.
The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane.
View Article and Find Full Text PDFAging Cell
November 2024
The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
One of the main hallmarks of Parkinson's disease (PD) pathology is the spread of the aggregate-prone protein α-synuclein (α-syn), which can be detected in the plasma and cerebrospinal fluid of patients as well as in the extracellular environment of neuronal cells. The secreted α-syn can exhibit "prion-like" behavior and transmission to naïve cells can promote conformational changes and pathology. The precise role of plasma membrane proteins in the pathologic process of α-syn is yet to be fully resolved.
View Article and Find Full Text PDFbioRxiv
November 2024
Cardiovascular Research Institute, University of California, San Francisco, CA 94158.
Unlabelled: Biological membranes are complex and dynamic structures with different populations of lipids in their inner and outer leaflets. The Ca-activated TMEM16 family of membrane proteins plays an important role in collapsing this asymmetric lipid distribution by spontaneously, and bidirectionally, scrambling phospholipids between the two leaflets, which can initiate signaling and alter the physical properties of the membrane. While evidence shows that lipid scrambling can occur via an open hydrophilic pathway ("groove") that spans the membrane, it remains unclear if all family members facilitate lipid movement in this manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!