Salt crystallization is a major damage factor in stone weathering, and the application of inappropriate protective products may amplify its effects. This research focuses on the evaluation of two protective products' performance (organic polydimethylsiloxane and inorganic ammonium oxalate (NH4)2(COO)2·H2O) in the case of a salt load from behind. Experimental laboratory simulations based on salt crystallization cycles and natural weathering in an urban area were carried out. The effects were monitored over time, applying different methods: weight loss evaluation, colorimetric and water absorption by capillarity measurements, stereomicroscope observations, FTIR and SEM-EDS analyses. The results showed minor impact exerted on the short term on stones, particularly those treated with the water repellent, by atmospheric agents compared to salt crystallization. Lithotypes with low salt load (Gioia marble) underwent minor changes than the heavily salt-laden limestones (Lecce and Ançã stones), which were dramatically damaged when treated with polysiloxane. The results suggest that the ammonium oxalate treatment should be preferred to polysiloxane in the presence of soluble salts, even after desalination procedures which might not completely remove them. In addition, the neo-formed calcium oxalate seemed to effectively protect the stone, improving its resistance against salt crystallization without occluding the pores and limiting the superficial erosion caused by atmospheric agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-013-2032-z | DOI Listing |
Pharmaceutics
November 2024
School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
: To improve the solubility and permeability of Sparfloxacin (SPX) and enhance its antimicrobial activity in vitro, two unreported pharmaceutical crystalline salts were synthesized and characterized in this paper. One is a hydrated crystal of Sparfloxacin with Pimelic acid (PIA), another is a hydrated crystal of Sparfloxacin with Azelaic acid (AZA), namely, SPX-PIA-HO (2CHFNO·CHO·2HO) and SPX-AZA-HO (4CHFNO·2CHO·5HO). : The structure and purity of two crystalline salts were analyzed using solid-state characterization methods such as single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and infrared spectroscopy.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
Tyrosinase is a key enzyme responsible for the formation of melanin (a natural skin pigment with ultraviolet-protection properties). However, some people experience melanin overproduction, so new, safe, and biocompatible enzyme inhibitors are sought. New tripeptide tyrosinase inhibitors were developed using molecular modeling.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Solar water evaporation (SWE) has emerged as an appealing method for water and salt recovery from hypersaline wastewater. However, different ions usually transfer and accumulate uncontrollably during ion-water separation, making salt fractionalization impractical for conventional SWE, and the resulting mixed salts are hard to use and still require significant costs for disposal. To achieve salt fractionalization and reutilization, achieving ion-water and ion-ion separation simultaneously are crucial in advancing SWE toward sustainability.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
Herein, we report the isolation of pyridine moiety-functionalized SiNSi pincer-based bis-silylene ligand () and its reactivity toward various halide precursors (X = Br and I) of group 13 elements (M = Al, Ga, and In). This gave us straightforward access to the SiNSi pincer-coordinated group 13 cations (-). These complexes are duly characterized by single-crystal X-ray diffraction studies, multinuclear magnetic resonance spectroscopy (H, C, and Si), and high-resolution mass spectrometry techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!