Background And Objective: The primary therapy for deep tissue abscesses is drainage accompanied by systemic antimicrobial treatment. However, the long antibiotic course required increases the probability of acquired resistance, and the high incidence of polymicrobial infections in abscesses complicates treatment choices. Photodynamic therapy (PDT) is effective against multiple classes of organisms, including those displaying drug resistance, and may serve as a useful adjunct to the standard of care by reduction of abscess microbial burden following drainage.

Study Design/materials And Methods: Aspirates were obtained from 32 patients who underwent image-guided percutaneous drainage of the abscess cavity. The majority of the specimens (24/32) were abdominal, with the remainder from liver and lung. Conventional microbiological techniques and nucleotide sequence analysis of rRNA gene fragments were used to characterize microbial populations from abscess aspirates. We evaluated the sensitivity of microorganisms to methylene blue-sensitized PDT in vitro both within the context of an abscess aspirate and as individual isolates.

Results: Most isolates were bacterial, with the fungus Candida tropicalis also isolated from two specimens. We examined the sensitivity of these microorganisms to methylene blue-PDT. Complete elimination of culturable microorganisms was achieved in three different aspirates, and significant killing (P < 0.0001) was observed in all individual microbial isolates tested compared to controls.

Conclusions: These results and the technical feasibility of advancing optical fibers through catheters at the time of drainage motivate further work on including PDT as a therapeutic option during abscess treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904787PMC
http://dx.doi.org/10.1002/lsm.22171DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
microbial populations
8
deep tissue
8
abscess aspirates
8
sensitivity microorganisms
8
microorganisms methylene
8
abscess
6
effective photodynamic
4
microbial
4
therapy microbial
4

Similar Publications

A simple co-assembly strategy to control the dimensions of nanoparticles for enhanced synergistic therapy.

J Colloid Interface Sci

January 2025

Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China. Electronic address:

Despite phthalocyanine has excellent photodynamic and photothermal effects as a photosensitizer and photothermal agent, hydrophobicity and aggregation limits its biological application. In this paper, phthalocyanine-cyanine co-assembled nanoparticles were designed to modulate the dimensions and morphology by introducing water-soluble cyanine. The cyanine had the ability to transform the nanomaterials from microrods to nanospheres, thus successfully constructing photoactivated nanomedicines.

View Article and Find Full Text PDF

Ficus Carica extract (FC) is a natural herb that has received a lot of interest in cancer treatment due to its potential anticancer activities against various malignancies. However, due to FC's low bioavailability and low solubility, its clinical use as an anti-cancer medicine is constrained. The current study aimed to prepare FC-loaded PLGA nanoparticles (NPs) for cancer treatment.

View Article and Find Full Text PDF

Transition metal complexes: next-generation photosensitizers for combating Gram-positive bacteria.

Future Med Chem

January 2025

Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R., China.

The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria.

View Article and Find Full Text PDF

Mitochondria-localized dinuclear iridium(III) complexes for two-photon photodynamic therapy.

Dalton Trans

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

Photodynamic therapy (PDT), as a non-invasive cancer treatment, offers significant advantages including high temporal-spatial selectivity, minimal surgical intervention, and low toxicity, thereby garnering considerable research interest from across the world. In this study, we have developed a series of dinuclear cyclometalated Ir(III) complexes as potential two-photon photodynamic anticancer agents. These Ir(III) complexes demonstrate significant two-photon absorption (2PA) cross-sections ( = 66-166 GM) and specifically target mitochondria.

View Article and Find Full Text PDF

Layşmanyaz, yaklaşık 90'dan fazla ülke ve bölgeden bildirilen, ciddi ve endemik bir bulaşıcı hastalıktır. Kutanöz layşmanyaz (KL) ise vücudun açıkta kalan bölgelerinde oluşan, başlıca semptomları arasında vektör Phlebotomus ısırığından altı ay sonra kronikleşebilen veya kendiliğinden iyileşebilen ciltte tek, birden fazla ülserli veya nodüler lezyonlar bulunan, ölümcül olmayan ancak kalıcı izler bırakabilen bir hastalıktır. Klasik tedavi yöntemleri, uygulamada zorluk, direnç gelişimi ve yan etki gibi bir dizi soruna neden olmaktadır.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!