Tandem recombineering by SLIC cloning and Cre-LoxP fusion to generate multigene expression constructs for protein complex research.

Methods Mol Biol

European Molecular Biology Laboratory (EMBL), BP 181, Polygone Scientifique, Grenoble, France.

Published: March 2014

A robust protocol to generate recombinant DNA containing multigene expression cassettes by using sequence and ligation independent cloning (SLIC) followed by multiplasmid Cre-LoxP recombination in tandem for multiprotein complex research is described. The protocol includes polymerase chain reaction (PCR) amplification of the desired genes, seamless insertion into the target vector via SLIC, and Cre-LoxP recombination of specific donor and acceptor plasmid molecules, optionally in a robotic setup. This procedure, called tandem recombineering, has been implemented for multiprotein expression in E. coli and mammalian cells, and also for insect cells using a recombinant baculovirus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-625-2_11DOI Listing

Publication Analysis

Top Keywords

tandem recombineering
8
multigene expression
8
cre-loxp recombination
8
recombineering slic
4
slic cloning
4
cloning cre-loxp
4
cre-loxp fusion
4
fusion generate
4
generate multigene
4
expression constructs
4

Similar Publications

Rationally designed universal passivator for high-performance single-junction and tandem perovskite solar cells.

Nat Commun

January 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China.

Interfacial trap-assisted nonradiative recombination hampers the development of metal halide perovskite solar cells (PSCs). Herein, we report a rationally designed universal passivator to realize highly efficient and stable single junction and tandem PSCs. Multiple defects are simultaneously passivated by the synergistic effect of anion and cation.

View Article and Find Full Text PDF

Sulfur Vacancies Limit the Open-Circuit Voltage of SbS Solar Cells.

ACS Energy Lett

January 2025

Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.

Antimony sulfide (SbS) is a promising candidate as an absorber layer for single-junction solar cells and the top subcell in tandem solar cells. However, the power conversion efficiency of SbS-based solar cells has remained stagnant over the past decade, largely due to trap-assisted nonradiative recombination. Here we assess the trap-limited conversion efficiency of SbS by investigating nonradiative carrier capture rates for intrinsic point defects using first-principles calculations and Sah-Shockley statistics.

View Article and Find Full Text PDF

Modification of the Se/MoO Rear Interface for Efficient Wide-Band-Gap Trigonal Selenium Solar Cells.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.

View Article and Find Full Text PDF

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

Estimating realized relatedness in free-ranging macaques by inferring identity-by-descent segments.

Proc Natl Acad Sci U S A

January 2025

Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig 04103, Germany.

Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!