Coral reefs are the most biodiverse and biologically productive of all marine ecosystems. Corals harbor diverse and abundant prokaryotic groups. However, little is known about the diversity of coral-associated microorganisms. We used molecular techniques to identify and compare the culturable bacterial assemblages associated with the soft coral Sarcophyton glaucum from the Red sea. Different media were utilized for microbial isolation, and the phylogeny of the culturable bacteria associated with the coral was analyzed based on 16S rDNA sequencing. The coral associated bacteria were found to be representatives within the Gammaproteobacteria, Actinobacteria, and Firmicutes. Antimicrobial activities of twenty bacterial isolates were tested against four pathogenic bacteria (Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, Vibrio fluvialis) and three fungi (Penicillium sp., Aspergillus niger, Candida albicans). A relatively high proportion of bacterial strains displayed distinct antibacterial and antifungal activities, suggesting that soft coral-associated microorganisms may aid their host in protection against marine pathogens. Members of genera Bacillus and Pseudomonas had the highest proportion of antimicrobial activity which supported the hypothesis that they might play a protective role in the coral hosts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.201300195DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
8
bacteria associated
8
associated soft
8
soft coral
8
coral sarcophyton
8
sarcophyton glaucum
8
coral-associated microorganisms
8
coral
6
phylogenetic diversity
4
diversity antimicrobial
4

Similar Publications

Different fates between extracellular and intracellular antimicrobial resistome in full-scale activated sludge and membrane bioreactor processes.

Water Res

January 2025

Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:

Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.

View Article and Find Full Text PDF

A bi-kinase module sensitizes and potentiates plant immune signaling.

Sci Adv

January 2025

Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany.

Systemic signaling is an essential hallmark of multicellular life. Pathogen encounter occurs locally but triggers organ-scale and organismic immune responses. In plants, elicitor perception provokes systemically expanding Ca and HO signals conferring immunity.

View Article and Find Full Text PDF

Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported.

View Article and Find Full Text PDF

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!