A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced hydrogen production from water via a photo-catalyzed reaction using chalcogenide d-element nanoparticles induced by UV light. | LitMetric

Hydrogen has the potential to meet the requirements as a clean non-fossil fuel in the future. The photocatalytic production of H2 through water splitting has been demonstrated and enormous efforts have been published. The present work is an attempt to enhance the production of H2 during water splitting using synthesized nanoparticles based on chalcogenide d-element semiconductors via a photochemical reaction under UV-light in the presence of methanol as a hole-scavenger. In general, the enhanced activity of a semiconductor is most likely due to the effective charge separation of photo generated electrons and holes in the semiconductors. Hence, the utilization of different semiconductors in combination can consequently provide better hydrogen production. Accordingly in this research work, two different semiconductors, with different concentrations, either used individually or combined together were introduced. They in turn produced a high concentration of H2 as detected and measured using gas chromatography. Herein, data revealed that the nano-structured semiconductors prepared through this work are a promising candidate in the production of an enhanced H2 flux under visible UV radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr02640jDOI Listing

Publication Analysis

Top Keywords

production water
12
hydrogen production
8
chalcogenide d-element
8
water splitting
8
production
5
semiconductors
5
enhanced hydrogen
4
water photo-catalyzed
4
photo-catalyzed reaction
4
reaction chalcogenide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!