Amino acid racemization in Pseudomonas putida KT2440.

J Bacteriol

Department of Plant and Soil Sciences, College of Agriculture, University of Kentucky, Lexington, Kentucky, USA.

Published: November 2013

D-Amino acids have been shown to play an increasingly diverse role in bacterial physiology, yet much remains to be learned about their synthesis and catabolism. Here we used the model soil- and rhizosphere-dwelling organism Pseudomonas putida KT2440 to elaborate on the genomics and enzymology of d-amino acid metabolism. P. putida KT2440 catabolized the d-stereoisomers of lysine, phenylalanine, arginine, alanine, and hydroxyproline as the sole carbon and nitrogen sources. With the exception of phenylalanine, each of these amino acids was racemized by P. putida KT2440 enzymes. Three amino acid racemases were identified from a genomic screen, and the enzymes were further characterized in vitro. The putative biosynthetic alanine racemase Alr showed broad substrate specificity, exhibiting measurable racemase activity with 9 of the 19 chiral amino acids. Among these amino acids, activity was the highest with lysine, and the k(cat)/K(m) values with l- and d-lysine were 3 orders of magnitude greater than the k(cat)/K(m) values with l- and d-alanine. Conversely, the putative catabolic alanine racemase DadX showed narrow substrate specificity, clearly preferring only the alanine stereoisomers as the substrates. However, DadX did show 6- and 9-fold higher k(cat)/K(m) values than Alr with l- and d-alanine, respectively. The annotated proline racemase ProR of P. putida KT2440 showed negligible activity with either stereoisomer of the 19 chiral amino acids but exhibited strong epimerization activity with hydroxyproline as the substrate. Comparative genomic analysis revealed differences among pseudomonads with respect to alanine racemase genes that may point to different roles for these genes among closely related species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811597PMC
http://dx.doi.org/10.1128/JB.00761-13DOI Listing

Publication Analysis

Top Keywords

putida kt2440
20
amino acids
16
alanine racemase
12
kcat/km values
12
amino acid
8
pseudomonas putida
8
substrate specificity
8
chiral amino
8
amino
6
putida
5

Similar Publications

Comparing three emerging industrial cell factories: Pseudomonas putida KT2440, Halomonas bluephagenesis TD01, and Zymomonas mobilis ZM4.

Curr Opin Biotechnol

January 2025

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:

Nonmodel microbes with unique advantages are emerging as industrial platforms, driven by advances in genetic engineering and omics technologies. Notable examples include the versatile soil bacterium Pseudomonas putida KT2440, the halophilic Halomonas bluephagenesis TD01, and the ethanologenic Zymomonas mobilis ZM4. While all three primarily use the Entner-Doudoroff pathway for glucose metabolism, they differ in various metabolic pathways and product synthesis.

View Article and Find Full Text PDF

Background: In biomanufacturing of surface-active agents, such as rhamnolipids, excessive foaming is a significant obstacle for the development of high-performing bioprocesses. The exploitation of the inherent tolerance of Pseudomonas putida KT2440, an obligate aerobic bacterium, to microaerobic conditions has received little attention so far. Here low-oxygen inducible promoters were characterized in biosensor strains and exploited for process control under reduction of foam formation by low aeration and stirring rates during biosynthesis of rhamnolipids.

View Article and Find Full Text PDF

Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.

View Article and Find Full Text PDF

Background: Pseudomonas putida KT2440, a non-pathogenic soil bacterium, is a key platform strain in synthetic biology and industrial applications due to its robustness and metabolic versatility. Various systems have been developed for genome editing in P. putida, including transposon modules, integrative plasmids, recombineering systems, and CRISPR/Cas systems.

View Article and Find Full Text PDF

A Novel Membrane-Associated Protein Aids Bacterial Colonization of Maize.

ACS Synth Biol

January 2025

Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.

The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!