Vascular endothelial growth factor receptor 3 (VEGFR-3) is a receptor for the vascular endothelial growth factor C and D (VEGF-C and D) and plays a critical role in the development of embryonic vascular system and regulation of tumor lymphangiogenesis. In this report, we generated a novel panel of 17 monoclonal antibodies (mAbs) against human VEGFR-3 and determined their ability to inhibit the proliferation of human erythroleukemia (HEL) cells and angiogenesis of chick embryo chorioallantoic membrane (CAM). Among these mAbs, BDD073 was demonstrated to inhibit the interaction of soluble VEGFR-3 with VEGF-D and the proliferation of HEL cells. Furthermore, in chick embryo CAM angiogenesis experiments, the angiogenesis induced by recombinant glutathione-S-transferase-VEGF-D was decreased in the presence of antibody BDD073. These data suggest that this novel neutralizing antibody against human VEGFR-3 could be a tool for the investigations into the biology of VEGFR-3, and potentially a reagent for blocking VEGF-D-induced angiogenesis and lymphogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896609PMC
http://dx.doi.org/10.4161/mabs.26239DOI Listing

Publication Analysis

Top Keywords

human vegfr-3
12
novel neutralizing
8
neutralizing antibody
8
vascular endothelial
8
endothelial growth
8
growth factor
8
hel cells
8
chick embryo
8
vegfr-3
6
inhibition angiogenesis
4

Similar Publications

Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.

View Article and Find Full Text PDF

This study aims to investigate the effect and mechanism of the herb pair Agrimoniae Herba-Coptidis Rhizoma in inhibiting angiogenesis in the colorectal cancer inflammatory microenvironment by using the method of network pharmacology and the zebrafish model. The method of network pharmacology was employed to obtain the active components, potential core targets, and signaling pathways regulated by the herb pair in inhibiting angiogenesis in the inflammatory microenvironment of colorectal cancer, on the basis of which the underlying mechanism was predicted. The zebrafish model of colorectal cancer was established, and the inflammatory microenvironment was modeled.

View Article and Find Full Text PDF

Matrix Viscoelasticity Controls Differentiation of Human Blood Vessel Organoids into Arterioles and Promotes Neovascularization in Myocardial Infarction.

Adv Mater

December 2024

Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China.

Stem cell-derived blood vessel organoids are embedded in extracellular matrices to stimulate vessel sprouting. Although vascular organoids in 3D collagen I-Matrigel gels are currently available, they are primarily capillaries composed of endothelial cells (ECs), pericytes, and mesenchymal stem-like cells, which necessitate mature arteriole differentiation for neovascularization. In this context, the hypothesis that matrix viscoelasticity regulates vascular development is investigated in 3D cultures by encapsulating blood vessel organoids within viscoelastic gelatin/β-CD assembly dynamic hydrogels or methacryloyl gelatin non-dynamic hydrogels.

View Article and Find Full Text PDF

Molecular Characterization and Interaction between Human VEGF-D and VEGFR-3.

J Microbiol Biotechnol

December 2024

Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.

Angiogenesis and lymphangiogenesis are some of the routes that cause metastasis. Vascular Endothelial Growth Factors (VEGFs) stimulate angiogenesis and lymphangiogenesis through VEGF receptors. Especially, VEGF-D and its receptor, VEGFR-3, play a pivotal role in regulating cellular processes such as survival, proliferation, and migration, thereby influencing lymphangiogenesis.

View Article and Find Full Text PDF

Molecules That Have Rarely Been Studied in Lymphatic Endothelial Cells.

Int J Mol Sci

November 2024

Institute of Anatomy and Cell Biology, University Medical Center Goettingen, Georg-August-University Goettingen, Kreuzbergring 36, 37075 Göttingen, Germany.

A number of standard molecules are used for the molecular and histological characterization of lymphatic endothelial cells (LECs), including lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), Podoplanin (D2-40), VEGFR3, Prospero homeobox protein 1 (PROX1), and CD31. The number of molecules whose mutations cause lymphatic malformations or primary congenital lymphedema is considerable, but the majority of these diseases have not yet been characterized at the molecular level. Therefore, there is still considerable scope for molecular and functional studies of the lymphatic vasculature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!