A cobalt-catalyzed oxidative [3 + 2] cycloaddition cascades of dihydroisoquinoline esters with nitroolefins or N-sulfuryl aldimines were developed at room temperature. A multi-component reaction for the synthesis of 5,6-dihydroimidazo[2,1-a]isoquinolines were also realized under almost identical conditions. This method is particularly suitable for the synthesis of tricyclic nitrogen heterocycles due to its simple manipulation, wide scope of the reaction substrates and excellent regioselectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3ob41424h | DOI Listing |
Chem Asian J
January 2025
Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India.
Herein, we present a sustainable and atom-economical approach for the synthesis of quinazolinones via acceptorless dehydrogenative coupling (ADC) using earth-abundant Co-salt, (CoCl) as the catalyst under neat condition. This method is distinguished by its green credentials, like, solvent-free, microwave-assisted heating, cost-effective, use of renewable alcohols, and generating only H and water as byproducts. Remarkably, this protocol achieves quinazolinone synthesis without the need for external ligands, oxidants, or additional additives.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States.
Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
Chiral allylamines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allylamines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFOrg Lett
January 2025
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zurich, Switzerland.
We report intramolecular photocatalyzed cycloisomerization of unactivated olefins with pendant nucleophiles. The reaction proceeds under mild conditions and utilizes guanidines, ureas, isoureas, isothioureas, and carbonates to yield several different five-, six-, and seven-membered heterocycles. Use of benzothiazinoquinoxaline as an organophotocatalyst and cobalt-salen catalyst obviates the need for a stoichiometric oxidant or reductant.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86 % yield, >98 : 2 chemo- and regioselectivity, >98 : 2 dr and >99.5:0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!