Enhancing RGI lyase thermostability by targeted single point mutations.

Appl Microbiol Biotechnol

Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark.

Published: November 2013

Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering approach involving single amino acid substitution. Nine individual amino acids were selected as targets for site-saturated mutagenesis by the use of a predictive consensus approach in combination with prediction of protein mutant stability changes and B-factor iteration testing. After extensive experimental verification of the thermal stability of the designed mutants versus the original wild-type RGI lyase, several promising single point mutations were obtained, particularly in position Glu434 on the surface of the enzyme protein. The best mutant, Glu434Leu, produced a half-life of 31 min at 60 °C, corresponding to a 1.6-fold improvement of the thermal stability compared to the original RGI lyase. Gly55Val was the second best mutation with a thermostability half-life increase of 27 min at 60 °C, and the best mutations following were Glu434Trp, Glu434Phe, and Glu434Tyr, respectively. The data verify the applicability of a combinatorial predictive approach for designing a small site saturation library for improving enzyme thermostability. In addition, new thermostable RGI lyases suitable for enzymatic upgrading of pectinaceous plant biomass materials at elevated temperatures were produced.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-013-5184-3DOI Listing

Publication Analysis

Top Keywords

rgi lyase
20
thermal stability
12
single point
8
point mutations
8
lyase
6
rgi
5
enhancing rgi
4
lyase thermostability
4
thermostability targeted
4
targeted single
4

Similar Publications

This study focuses on pectin covalently linked in cell walls from two sources, apples and carrots, that was extracted using diluted alkali, and it describes changes in the rheological properties of diluted alkali-soluble pectin (DASP) due to enzymatic treatment. Given DASP's richness of rhamnogalacturonan I (RG-I), RG-I acetyl esterase (RGAE), rhamnogalacturonan endolyase (RGL), and arabinofuranosidase (ABF) were employed in various combinations for targeted degradation of RG-I pectin chains. Enzymatic degradations were followed by structural studies of pectin molecules using atomic force microscopy (AFM) as well as measurements of rheological and spectral properties.

View Article and Find Full Text PDF

Fruit softening: evidence for rhamnogalacturonan lyase action in vivo in ripe fruit cell walls.

Ann Bot

April 2024

The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.

Background And Aims: The softening of ripening fruit involves partial depolymerization of cell-wall pectin by three types of reaction: enzymic hydrolysis, enzymic elimination (lyase-catalysed) and non-enzymic oxidative scission. Two known lyase activities are pectate lyase and rhamnogalacturonan lyase (RGL), potentially causing mid-chain cleavage of homogalacturonan and rhamnogalacturonan-I (RG-I) domains of pectin respectively. However, the important biological question of whether RGL exhibits action in vivo had not been tested.

View Article and Find Full Text PDF

Suppressing the rhamnogalacturonan lyase gene FaRGLyase1 preserves RGI pectin degradation and enhances strawberry fruit firmness.

Plant Physiol Biochem

January 2024

Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain. Electronic address:

Plant rhamnogalacturonan lyases (RGLyases) cleave the backbone of rhamnogalacturonan I (RGI), the "hairy" pectin and polymer of the disaccharide rhamnose (Rha)-galacturonic acid (GalA) with arabinan, galactan or arabinogalactan side chains. It has been suggested that RGLyases could participate in remodeling cell walls during fruit softening, but clear evidence has not been reported. To investigate the role of RGLyases in strawberry softening, a genome-wide analysis of RGLyase genes in the genus Fragaria was performed.

View Article and Find Full Text PDF

Elucidating structure of pectin in ramie fiber to customize enzyme cocktail for high-efficiency enzymatic degumming.

Carbohydr Polym

August 2023

State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China. Electronic address:

Pectin is one of the main components of bast fiber including ramie fiber, and must be removed before use. Enzymatic degumming is the preferred process as it is an environment-friendly, simple and controllable process for ramie degumming. However, an important problem limiting wide application of this process is the high cost due to the low efficiency of enzymatic degumming.

View Article and Find Full Text PDF

Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein.

Carbohydr Polym

February 2023

Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America.

To characterize a purified rhamnogalacturonan-I (RG-I) containing both RG-I and arabinogalactan-protein (AGP) types of glycosyl residues, an AGP-specific β-1,3-galactanase that can cleave the AG backbone and release the AG sidechain was applied to this material. Carbohydrate analysis and NMR spectroscopy verified that the galactanase-released carbohydrate consists of RG-I covalently attached to the AG sidechain, proving a covalent linkage between RG-I and AGP. Size exclusion chromatography-multiangle light scattering-refractive index detection revealed that the galactanase-released RG-I has an average molecular weight of 41.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!