Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2169/internalmedicine.52.0763 | DOI Listing |
PLoS One
December 2024
Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
Objective: A biallelic missense mutation in mitofusin 2 (MFN2) causes multiple symmetric lipomatosis and partial lipodystrophy, implicating disruption of mitochondrial fusion or interaction with other organelles in adipocyte differentiation, growth and/or survival. In this study, we aimed to document the impact of loss of mitofusin 1 (Mfn1) or 2 (Mfn2) on adipogenesis in cultured cells.
Methods: We characterised adipocyte differentiation of wildtype (WT), Mfn1-/- and Mfn2-/- mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes in which Mfn1 or 2 levels were reduced using siRNA.
J Nanobiotechnology
December 2024
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
Diabetes mellitus (DM) prevalence is rising worldwide. Current therapies comprising subcutaneous insulin injections can cause adverse effects such as lipodystrophy, local reactions like redness and swelling, fluid retention, and allergic reactions. Nanoparticle carriers for oral insulin are groundbreaking compared to existing methods because they are non-invasive treatments, showing operational convenience, controlled release profile, and ability to simulate the physiological delivery route into the bloodstream.
View Article and Find Full Text PDFNeuro Endocrinol Lett
November 2024
First Affiliated Hospital of Kunming Medical University, Kunming, China.
Adipose dystrophy, also known as lipodystrophy, is a heterogeneous disease characterized by the complete or partial loss of adipose tissue. In some cases, patients with lipodystrophy may exhibit fat accumulation in other areas of the body, as well as metabolic abnormalities such as insulin resistance, hyperlipidemia, liver disease, and increased metabolic rate. The condition may also be associated with gene mutations, including those in acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2), Berardinelli-Seip Congenital Lipodystrophy 2 (BSCL2), caveolin-1 (CAV1), polymerase I and transcript release factor (PTRF), lamins A (LMNA), zinc metalloproteinase (ZMPSTE24), peroxisome proliferator-activated receptor gamma (PPARG), v-AKT murine thymoma oncogene homolog 2 (AKT2), perilipin 1 (PLIN1), and proteasome subunit, β-type, 8 (PSMB8).
View Article and Find Full Text PDFWorld J Diabetes
December 2024
Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China.
Background: Familial partial lipodystrophy disease (FPLD) is a collection of rare genetic diseases featuring partial loss of adipose tissue. However, metabolic difficulties, such as severe insulin resistance, diabetes, hypertriglyceridemia, and hypertension frequently occur alongside adipose tissue loss, making it susceptible to misdiagnosis and delaying effective treatment. Numerous genes are implicated in the occurrence of FPLD, and genetic testing has been for conditions linked to single gene mutation related to FPLD.
View Article and Find Full Text PDFFront Genet
November 2024
Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
Introduction: Inherited lipodystrophies are a group of rare diseases defined by severe reduction in adipose tissue mass and classified as generalized or partial. We report a non-familial (sporadic) case of partial lipodystrophy caused by a novel genetic mechanism involving closely linked pathogenic variants in the gene.
Methods: A female adult with partial lipodystrophy and her parents were evaluated for gene variants across the exome under different mendelian inheritance models (autosomal dominant, recessive, compound heterozygous, and X-linked) to find pathogenic variants.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!