Estrogen: a master regulator of bioenergetic systems in the brain and body.

Front Neuroendocrinol

Neuroscience Department, University of Southern California, Los Angeles, CA 90033, United States; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States. Electronic address:

Published: January 2014

Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024050PMC
http://dx.doi.org/10.1016/j.yfrne.2013.08.001DOI Listing

Publication Analysis

Top Keywords

brain body
12
body estrogen
8
brain bioenergetics
8
peripheral metabolic
8
biomarker profiles
8
estrogen
7
brain
7
estrogen master
4
master regulator
4
regulator bioenergetic
4

Similar Publications

Loneliness is associated with different structural brain changes in schizophrenia spectrum disorders and major depression.

Schizophr Res

January 2025

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm, Germany. Electronic address:

Background: Loneliness, distress from having fewer social contacts than desired, has been recognized as a significant public health crisis. Although a substantial body of research has established connections between loneliness and various forms of psychopathology, our understanding of the neural underpinnings of loneliness in schizophrenia spectrum disorders (SSD) and major depressive disorder (MDD) remains limited.

Methods: In this study, structural magnetic resonance imaging (sMRI) data were collected from 57 SSD and 45 MDD patients as well as 41 healthy controls (HC).

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance.

View Article and Find Full Text PDF

A neuromechanics solution for adjustable robot compliance and accuracy.

Sci Robot

January 2025

Research Center for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain.

Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective.

View Article and Find Full Text PDF

Early precursor-derived pituitary gland tissue-resident macrophages play a pivotal role in modulating hormonal balance.

Cell Rep

January 2025

Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland. Electronic address:

The pituitary gland is the central endocrine regulatory organ producing and releasing hormones that coordinate major body functions. The physical location of the pituitary gland at the base of the brain, though outside the protective blood-brain barrier, leads to an unexplored special immune environment. Using single-cell transcriptomics, fate mapping, and imaging, we characterize pituitary-resident macrophages (pitMØs), revealing their heterogeneity and spatial specialization.

View Article and Find Full Text PDF

Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!