Endogenous neurokinin and adrenergic mechanisms might co-participate in the pathology of acute myocardial infarction (MI). This study sought to investigate the role of endogenous neurokinin and its relationship with β1-adrenergic mechanism in the infarction induced arrhythmias. In 60min of MI in rats, the contents of substance P (SP), a native agonist of neurokinin 1 receptor (NK1-R), norepinephrine (NE), NK1-R and β1-adrenergic receptor in the myocardium at risk of ischemia were examined and the ventricular arrhythmias were analyzed. The effects of pretreatment with D-SP (152ng/kg), a specific antagonist of NK1-R, esmolol (10mg/kg), a specific blocker of β1-adrenergic receptor, and a combination of the two blockers were studied. The results showed that the overlaps of up-regulation of NE, SP and the increase of ventricular arrhythmias were observed. D-SP exacerbated the episodes and duration of VT & VF by 54% and 104%, respectively (all P<0.05). Esmolol inhibited the morbidity rate, the episodes and the duration of VT & VF by 66%, 92% and 95%, respectively. Surprisingly, esmolol significantly attenuated the arrhythmogenic effect of D-SP throughout the MI, beyond the time span of esmolol action, during which a significant up-regulation of the NK1-R (by 19%, P<0.05) was detected. In conclusion, the findings of this study may indicate an anti-arrhythmic effect of endogenous neurokinin mechanism, through the activation of which, via up-regulation of NK1 receptor, esmolol may exert its anti-arrhythmic action at the early time of acute myocardial infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2013.08.004DOI Listing

Publication Analysis

Top Keywords

endogenous neurokinin
12
β1-adrenergic receptor
8
ventricular arrhythmias
8
esmolol activates
4
activates endogenous
4
neurokinin
4
neurokinin activity
4
activity inhibiting
4
inhibiting infarction-induced
4
arrhythmias
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!