Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The thermostability of maltogenic amylase from Bacillus sp. US149 (MAUS149) was improved by random mutagenesis using error prone PCR. The library constructed for the mutants obtained was subjected to screening, leading to the selection of a thermostable mutant enzyme named MA-A27. The latter was noted to contain four single mutations, namely D46V, P78L, V145A, and K548E. The half-life times recorded for MA-A27 at 50°C and 55°C were 70 min and 25 min, compared to 30 min and 13 min for the wild type, respectively. The results from molecular modeling attributed the increase in thermostability observed for MA-A27 to P78L and K548E substitutions that led to new hydrogen bond and salt bridge formations. Further site-directed mutagenesis studies showed that the P78L and K548E single mutations underwent an increase in thermostability, thus confirming the joint contribution of both substitutions to the increase in thermostability observed for MA-A27.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2013.08.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!