Goal representation in the infant brain.

Neuroimage

Centre for Brain and Cognitive Development, Birkbeck College, Malet Street, London, UK. Electronic address:

Published: January 2014

It is well established that, from an early age, human infants interpret the movements of others as actions directed towards goals. However, the cognitive and neural mechanisms which underlie this ability are hotly debated. The current study was designed to identify brain regions involved in the representation of others' goals early in development. Studies with adults have demonstrated that the anterior intraparietal sulcus (aIPS) exhibits repetition suppression for repeated goals and a release from suppression for new goals, implicating this specific region in goal representation in adults. In the current study, we used a modified paired repetition suppression design with 9-month-old infants to identify which cortical regions are suppressed when the infant observes a repeated goal versus a new goal. We find a strikingly similar response pattern and location of activity as had been reported in adults; the only brain region displaying significant repetition suppression for repeated goals and a release from suppression for new goals was the left anterior parietal region. Not only does our data suggest that the left anterior parietal region is specialized for representing the goals of others' actions from early in life, this demonstration presents an opportunity to use this method and design to elucidate the debate over the mechanisms and cues which contribute to early action understanding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898941PMC
http://dx.doi.org/10.1016/j.neuroimage.2013.08.043DOI Listing

Publication Analysis

Top Keywords

repetition suppression
12
goal representation
8
current study
8
suppression repeated
8
repeated goals
8
goals release
8
release suppression
8
suppression goals
8
left anterior
8
anterior parietal
8

Similar Publications

Background And Objective: Complicated urinary tract infections (cUTIs) are serious, potentially life-threatening infections that occur in patients with an increased disease progression risk. Antimicrobial resistance represents an important health issue worldwide, contributing to relapses, which can generate further resistances. It is necessary to clarify the role of microbiological eradication as an additional objective in the management of cUTIs.

View Article and Find Full Text PDF

Neural representations for visual stimuli typically emerge with a bilateral distribution across occipitotemporal cortex (OTC)? Pediatric patients undergoing unilateral OTC resection offer an opportunity to evaluate whether representations for visual stimulus individuation can sufficiently develop in a single OTC. Here, we assessed the non-resected hemisphere of patients with pediatric resection within ( = 9) and outside ( = 12) OTC, as well as healthy controls' two hemispheres ( = 21). Using functional magnetic resonance imaging, we mapped category selectivity (CS), and representations for visual stimulus individuation (for faces, objects, and words) with repetition suppression (RS).

View Article and Find Full Text PDF

In the attentional blink paradigm, participants attempt to identify two targets appearing in a rapidly presented stream of distractors. Report accuracy is typically high for the first target (T1) while identification of the second target (T2) is impaired when it follows within about 200-400 ms of T1. An important question is whether T2 is processed to a semantic level even when participants are unaware of its identity.

View Article and Find Full Text PDF

Transverse mode instability (TMI) significantly limits the power scaling of ytterbium-doped fiber lasers. In this Letter, what we believe to be a novel TMI mitigation strategy is proposed and demonstrated in a bidirectional output fiber laser. On the basis of the continuous wave (CW) pump, integrating a quasi-continuous wave (QCW) pump can effectively improve the TMI threshold of the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!