Unlabelled: Multi-drug tolerance is an important phenotypic property that complicates treatment of infectious diseases and reshapes drug discovery. Hence a systematic study of the origins and mechanisms of resistance shown by microorganisms is imperative. Since soil-dwelling bacteria are constantly challenged with a myriad of antibiotics, they are potential reservoirs of resistance determinants that can be mobilized into pathogens over a period of time. Elucidating the resistance mechanisms in such bacteria could help future antibiotic discoveries. This research is a preliminary study conducted to determine the effects of ciprofloxacin (CIP) on the intrinsically resistant Gram-positive soil bacterium Streptomyces coelicolor. The effect was investigated by performing 2-DE on total protein extracts of cells exposed to sub-lethal concentrations of ciprofloxacin as compared to the controls. Protein identification by MALDI-TOF/TOF revealed 24 unique differentially expressed proteins, which were statistically significant. The down-regulation of proteins involved in carbohydrate metabolism indicated a shift in the cell physiology towards a state of metabolic shutdown. Furthermore, the observed decline in protein levels involved in transcription and translation machinery, along with depletion of enzymes involved in amino acid biosynthesis and protein folding could be a cellular response to DNA damage caused by CIP, thereby minimizing the effect of defective and energetically wasteful metabolic processes. This could be crucial for the initial survival of the cells before gene level changes could come into play to ensure survival under prolonged adverse conditions. These results are a first attempt towards profiling the proteome of S. coelicolor in response to antibiotic stress. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Biological Significance: Soil-dwelling bacteria could serve as a reservoir of resistance determinants for clinically important bacteria. In this work, we investigated, for the first time, the differential proteomic profile of S. coelicolor cells in response to sub-inhibitory concentrations of Ciprofloxacin using 2-DE. Results indicate a shift in the cell physiology towards a state of metabolic shutdown, possibly to counter the DNA damage by ciprofloxacin. Further, up-regulation of GAPDH, RNA pol mRNA and Translation IF2 protein indicates a reprogramming of the cell for long-term survival. This study could serve as a basis for further investigations to elucidate the general mechanism by which soil bacteria exhibit resistance to fluroquinolones. This may help in developing new drug protocols and inventing novel drugs to counter resistance to this class of antibiotics in pathogenic bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2013.08.013 | DOI Listing |
J Agric Food Chem
January 2025
Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Shanghai 201210, China.
Microbial uricase is an essential enzyme in purine degradation and the development of low-purine food. High enzyme activity and an appropriate optimum pH must be established for low-purine food. Uricases from , , , , and were heterologously expressed in .
View Article and Find Full Text PDFBiotechnol Bioeng
December 2024
Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.
Production of specialized metabolites are restricted to the metabolic capabilities of the organisms. Genome-scale models (GEM)s are useful to study the whole metabolism and to find metabolic engineering targets to increase the yield of a target compound. In this work we use a modified model of Streptomyces coelicolor M145 to simulate the production of lagmysin A (LP4) and the novel lagmysin B (LP2) lasso peptide, in the heterologous host Streptomyces coelicolor M1152.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L3G1, Canada.
The calcium-dependent antibiotics (CDAs) are a group of seven closely related membrane-active cyclic lipopeptide antibiotics (cLPAs) first isolated in the early 1980s from the fermentation broth of . Their target was unknown, and the mechanism of action is uncertain. Herein, we report new routes for the synthesis of CDA4b and its analogues, explore the structure-activity relationships at its lipid tail and at positions 3, 9, and 11, and determine the CDAs' lipid target.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao 266003, People's Republic of China.
, a common foodborne pathogen, has a close association with agriculture and food. With the rapid emergence and widespread dissemination of antimicrobial resistance, efforts have been directed toward developing and studying new antimicrobial compounds to inhibit the growth of and other foodborne pathogens, thereby preventing contamination and ensuring food safety. Herein, we reported eight new aromatic polyketides, naphpyrones A-H (-), from the heterologous expression strain A3(2)/ ΔH3.
View Article and Find Full Text PDFNAR Genom Bioinform
December 2024
Institute for Bioinformatics and Medical Informatics, Department of Computer Science, University of Tübingen, Sand 14, Tübingen 72076, Germany.
RNA-seq and its 5'-enrichment methods for prokaryotes have enabled the precise identification of transcription start sites (TSSs), improving gene expression analysis. Computational methods are applied to these data to identify TSSs and classify them based on proximal annotated genes. While some TSSs cannot be classified at all (orphan TSSs), other TSSs are found on the reverse strand of known genes (antisense TSSs) but are not associated with the direct transcription of any known gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!