Entry of Newcastle Disease Virus into the host cell: role of acidic pH and endocytosis.

Biochim Biophys Acta

Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 106/108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain.

Published: January 2014

Most paramyxoviruses enter the cell by direct fusion of the viral envelope with the plasma membrane. Our previous studies have shown the colocalization of Newcastle Disease Virus (NDV) with the early endosome marker EEA1 and the inhibition of NDV fusion by the caveolin-phosphorylating drug phorbol 12-myristate 13-acetate (PMA) prompted us to propose that NDV enters the cells via endocytosis. Here we show that the virus-cell fusion and cell-cell fusion promoted by NDV-F are increased by about 30% after brief exposure to low pH in HeLa and ELL-0 cells but not in NDV receptor- deficient cell lines such as GM95 or Lec1. After a brief low-pH exposure, the percentage of NDV fusion at 29 °C was similar to that at 37 °C without acid-pH stimulation, meaning that acid pH would decrease the energetic barrier to enhance fusion. Furthermore, preincubation of cells with the protein kinase C inhibitor bisindolylmaleimide led to the inhibition of about 30% of NDV infectivity, suggesting that a population of virus enters cells through receptor-mediated endocytosis. Moreover, the involvement of the GTPase dynamin in NDV entry is shown as its specific inhibitor, dynasore, also impaired NDV fusion and infectivity. Optimal infection of the host cells was significantly affected by drugs that inhibit endosomal acidification such as concanamycin A, monensin and chloroquine. These results support our hypothesis that entry of NDV into ELL-0 and HeLa cells occurs through the plasma membrane as well as by dynamin- low pH- and receptor- dependent endocytosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094467PMC
http://dx.doi.org/10.1016/j.bbamem.2013.08.008DOI Listing

Publication Analysis

Top Keywords

ndv fusion
12
ndv
9
newcastle disease
8
disease virus
8
plasma membrane
8
enters cells
8
fusion
7
cells
6
entry newcastle
4
virus host
4

Similar Publications

Background: In poultry, despite intense vaccination programs for prevention of Newcastle disease (ND), the ND infection still affects, causing high mortality in most vaccinated flocks.

Aim: This study aimed to determine whether the genetic material of the ND virus has changed and has become incompatible with the vaccines used in Iraq.

Methods: Real-time PCR was used to analyze genetic variation in the fusion (F) and haemaggluatination neuraminidase (HN) genes, as well as mRNA expression changes in inflammatory biomarkers, including C-reactive protein (CRP), interleukin 6, interleukin-1 beta (IL-6, IL-1β), and gamma interferon (IFN-γ).

View Article and Find Full Text PDF

The rapid development of coronavirus disease 2019 (COVID-19) vaccines has helped mitigate the initial impact of the pandemic. However, in order to reduce transmission rates and protect more vulnerable and immunocompromised individuals unable to mount an effective immune response, development of a next-generation of mucosal vaccines is necessary. Here, we developed an intranasal Newcastle disease virus (NDV)-based vaccine expressing the spike of the XBB.

View Article and Find Full Text PDF

Multi-Epitopic Peptide Vaccine Against Newcastle Disease Virus: Molecular Dynamics Simulation and Experimental Validation.

Vaccines (Basel)

November 2024

Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Phase-V, Hayatabad Peshawar, Peshawar 25100, Pakistan.

Background: Newcastle disease virus (NDV) is a highly contagious and economically devastating pathogen affecting poultry worldwide, leading to significant losses in the poultry industry. Despite existing vaccines, outbreaks continue to occur, highlighting the need for more effective vaccination strategies. Developing a multi-epitopic peptide vaccine offers a promising approach to enhance protection against NDV.

View Article and Find Full Text PDF

Newcastle disease virus (NDV) is an extremely contagious and deadly virus that affects numerous bird species, posing serious threats to poultry production on a global scale. In addition to implementing biosecurity practices in farming systems, vaccination remains the most effective means of controlling Newcastle disease (ND). However, while existing commercial vaccines provide some level of protection, the effectiveness of these vaccines can be questionable, particularly in field settings where the complexity of vaccination program implementation poses significant challenges, especially against virulent genotypes of NDV.

View Article and Find Full Text PDF

Background And Objectives: The rapid spread of Newcastle disease (ND), driven by extensive commercial exchange in the poultry industry, necessitates urgent preventive measures. Although effective vaccines against the Newcastle disease virus (NDV) have been used since 1940, recent outbreaks and the limitations of current vaccines highlight the need for improved solutions. Advances in synthetic biology, reverse vaccinology, molecular biology, and recombinant DNA technology over the past 20 years have led to the development of recombinant vaccines, which offer enhanced protection and broader immunogenic coverage against NDV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!