Dual-layered-coated mechanically-durable superomniphobic surfaces with anti-smudge properties.

J Colloid Interface Sci

Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA.

Published: November 2013

Bio-inspired surfaces that exhibit high contact angle and low contact angle hysteresis for various liquids and demonstrate mechanical durability and anti-smudge properties are of interest for various applications. The fabrication of such surfaces has often involved complex or expensive processes, required techniques that may not be suitable for various substrates and particles, may require surface post-treatment, or may lack durability. Dual layered coatings of roughness-induced superomniphobic surfaces that demonstrate good mechanical durability were fabricated on glass substrates using hydrophobic SiO2 nanoparticles and low surface energy fluorobinders using dip coating and spray coating techniques. The particle-to-binder ratio was optimized for contact angles of interest. The mechanical durability of these coatings was examined under mechanical rubbing action. The anti-smudge properties were examined by wiping an artificially contaminated coating using oil-impregnated microfiber cloth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2013.07.032DOI Listing

Publication Analysis

Top Keywords

anti-smudge properties
12
mechanical durability
12
superomniphobic surfaces
8
contact angle
8
dual-layered-coated mechanically-durable
4
mechanically-durable superomniphobic
4
surfaces
4
surfaces anti-smudge
4
properties bio-inspired
4
bio-inspired surfaces
4

Similar Publications

Organic-inorganic covalent-ionic network enabled all-in-one multifunctional coating for flexible displays.

Nat Commun

November 2024

College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.

Article Synopsis
  • Touch displays are common but current protective methods for flexible screens are bulky and limit design potential.
  • Researchers have developed a new organic-inorganic hybrid coating that combines various protective functions into a single layer.
  • This innovative coating is not only multifunctional—offering optical clarity, flexibility, and scratch resistance—but is also eco-friendly due to its recyclability, making it ideal for future technology.
View Article and Find Full Text PDF

Rational Design of Highly Comprehensive Liquid-Like Coatings with Enhanced Transparency, Concerted Multi-Function, and Excellent Durability: A Ternary Cooperative Strategy.

Adv Mater

August 2024

Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Durable repellent surfaces of high transparency find key applications in daily life and industry. Nevertheless, developing anti-reflective coatings with omni-repellency, concerted multi-function, and desirable durability remains a daunting challenge. Here, a highly comprehensive coating is designed based on the combination of structural design and molecular design.

View Article and Find Full Text PDF

Solvent-Free and UV-Cured Epoxy Silicone Coating with Excellent Wear Resistance and Antismudge Properties.

ACS Appl Mater Interfaces

July 2024

School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.

Transparent, hard, and flexible multifunctional coatings have a wide range of applications; however, most of them need organic solvents. Here, we present a solvent-free and UV-cured coating made from fluorinated epoxy MTQ silicone resin combined with branched triepoxy siloxane as the reactive diluent. After UV-initiated ring-opening polymerization in the presence of a triarylsulfonium hexafluoroantimonate catalyst, the resultant cured coating exhibits high transparency (∼92%, 550 nm), pencil hardness (7H), and flexibility (1 mm bending diameter) due to the formed organic-inorganic nanostructures in a highly cross-linked network.

View Article and Find Full Text PDF

Smooth interfaces embedded with low surface free energy allow effortless sliding of beaded droplets of selected liquids-with homogeneous wettability. Such slippery interfaces display low or moderate contact angles, unlike other extremely liquid repellent interfaces ( superhydrophobic). These slippery interfaces emerged as a promising alternative to extremely liquid repellent hierarchically rough interfaces that generally suffer from instability under severe conditions, scattering of visible light because of the hierarchically rough interface, entrapment of fine solid particulates in their micro-grooves and so on.

View Article and Find Full Text PDF

Slippery coatings, such as the slippery liquid-infused porous surface (SLIPS), have gained significant attention for their potential applications in anti-icing and anti-fouling. However, they lack durability when subjected to mechanical impact. In this study, we have developed a robust slippery coating by blending polyurethane acrylate (PUA) with methyltriethoxysilane (MTES) and perfluoropolyether (PFPE) in the solvent of butyl acetate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!