Highly pathogenic avian influenza H5N1 virus causes a severe, often fatal, pneumonia in humans. The tropism and pathogenesis of highly pathogenic avian influenza H5N1 virus can partly be explained by the presence of H5N1 virus receptors in the human alveoli, which are the site of inflammation during pneumonia. Although studies on the distribution of influenza virus receptors in normal respiratory tract tissues have provided significant insights into the cell tropism and pathogenesis of influenza viruses, the distribution of influenza virus receptors have not been studied during influenza virus infection. Therefore, we studied the distribution of H5N1 virus receptors, by virus and lectin histochemistry, during highly pathogenic avian influenza H5N1 virus infection in alveolar tissues of humans, macaques, ferrets, and cats. In all species, we observed a decrease of H5N1 virus receptors in influenza virus-infected and neighboring cells. The observed decrease of H5N1 virus receptors was associated with the presence of MxA, a known marker for interferon activity. Taken together, our data suggest that the decrease of H5N1 virus receptors might be part of a defense mechanism that limits viral replication in the lower respiratory tract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajpath.2013.07.004 | DOI Listing |
Emerg Microbes Infect
January 2025
The Pirbright Institute, Pirbright, Woking, United Kingdom.
Clade 2.3.4.
View Article and Find Full Text PDFBetween 21 September and 6 December 2024, 657 highly pathogenic avian influenza (HPAI) A(H5N1) and A(H5N5) virus detections were reported in domestic (341) and wild (316) birds across 27 countries in Europe. Many HPAI outbreaks in domestic birds were clustered in areas with high poultry density and characterised by secondary farm-to-farm spread. Waterfowl, particularly the mute swan, were primarily affected during this reporting period, with HPAI virus detections focused on south-eastern Europe.
View Article and Find Full Text PDFEuro Surveill
January 2025
School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong SAR), China.
We isolated three genotypes of highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
Emerging infectious diseases are of major concern to animal and human health. Recent emergence of high pathogenicity avian influenza virus (HPAIV) (H5N1 clade 2.3.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!