Contaminant residues in food packaging is a new challenge of our time, as it may pose a threat for consumers. Higher levels of contaminants were observed in food packaging made by recycled materials, even if little information is available for some groups of contaminants. The present study proposes a procedure for analyzing three different groups of organic contaminants in recycled paper and paperboard. Seventeen commercial samples were analyzed for the presence of bisphenol A (BPA), bis (2-ethylhexyl) phthalate (DEHP), nonylphenol monoethoxylate (NMP) and nonylphenol di-ethoxilate (NDP). Not all the samples contained all the contaminants; BPA was the only substance present in all the samples. The concentrations detected were quite high and, in most of the cases, in agreement with results reported in previous studies. Substance migration tests from spiked/non-spiked samples for two dry foods and Tenax® food simulant were undertaken. BPA migration quotients were always lower than 1%, whereas the migration quotients of DEHP were higher than 2.0%. The highest nonylphenols migration quotients were 6.5% for NMP and 8.2% for NDP. Tenax® simulates well the contaminants migration from paperboard to dry food, in some cases being even more severe than the food.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2013.07.014DOI Listing

Publication Analysis

Top Keywords

migration quotients
12
food simulant
8
food packaging
8
food
7
contaminants
6
migration
6
recycled paper-paperboard
4
paper-paperboard food
4
food contact
4
contact materials
4

Similar Publications

Wintering loons in South Korea face an ongoing threat from polycyclic aromatic hydrocarbons: Shifting sources and potential DNA damage.

Environ Pollut

January 2025

Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea. Electronic address:

Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.

View Article and Find Full Text PDF

Phthalate esters in dusts from different indoor and outdoor microenvironment and potential human health risk: A case study in Beijing.

Environ Res

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:

Phthalate esters (PAEs) are widely used plasticizers that can easily migrate from plastic products, thereby presenting potential health risks through exposure. While PAE concentrations in dust have received increasing attention, there is still a lack of comprehensive understanding regarding their environmental distribution, composition profiles, and associated human exposure risks in Beijing. This study investigated the presence of seven PAEs in 124 dust samples collected from eight indoor and four outdoor microenvironment types across the Beijing metropolitan area.

View Article and Find Full Text PDF

Occurrence, migration, and assessment of human health and ecological risks of PFASs and EDCs in groundwater of Northeast China.

Water Res

February 2025

Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.

Northeast China as an important base of grain production in China, has been suffering from potential groundwater pollution due to the excessive and prolonged application of fertilizers and pesticides. However, exploration of emerging contaminants pollution in groundwater and assessment of human health and ecological risks caused by large-scale agricultural activities have been relatively scarce. This study collected groundwater samples from typical agricultural areas in Northeast China to investigate the extent of contamination by nitrate, per- and polyfluoroalkyl substances (PFASs) and endocrine-disrupting compounds (EDCs), and then compared the levels of these pollutants with those in other regions of China.

View Article and Find Full Text PDF

Convenient Self-Heating Instant Food Causes Significant Increasing Human Exposure to Organophosphate Esters.

Environ Health (Wash)

January 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

The self-heating lunch box (SHLB) is a kind of popular instant food in China, yet little is known about the associated chemical release risk during its heating process. In this study, we investigated organophosphate esters (OPEs) in original unheated food (UF), SHLB-heated processed food (HF) and potential OPE release from SHLB packaging materials. Significantly higher concentrations of OPEs were observed in HF (267 ± 246 ng/g dry weight (dw)) than in UF (163 ± 211 ng/g dw) ( < 0.

View Article and Find Full Text PDF

Probabilistic health risk assessment of primary aromatic amines in polyamide cooking utensils in China by Monte Carlo simulation.

Food Chem Toxicol

November 2024

Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China. Electronic address:

The migration of primary aromatic amines (PAAs) from food contact materials raises significant public health concerns. In this study, the migration levels of 26 PAAs were analyzed in 242 nylon cooking utensils using ultra-performance liquid chromatography-tandem mass spectrometry. A total of 18 PAAs were detected, of which 14 were quantified, with 4,4'-diaminodiphenylmethane (4,4'-MDA) and aniline being the most prevalent ones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!