Temperature-dependent dynamics of bovine casein micelles in the range 10-40 °C.

Food Chem

Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.

Published: December 2013

Milk is a complex colloidal system that responds to changes in temperature imposed during processing. Whilst much has been learned about the effects of temperature on milk, little is known about the dynamic response of casein micelles to changes in temperature. In this study, a comprehensive physico-chemical study of casein micelles in skim milk was performed between 10 and 40 °C. When fully equilibrated, the amount of soluble casein, soluble calcium and the pH of skim milk all decreased as a function of increasing temperature, whilst the hydration and volume fraction of the casein micelles decreased. The effect of temperature on casein micelle size, as determined by dynamic light scattering and differential centrifugation, was less straightforward. Real-time measurements of turbidity and pH were used to investigate the dynamics of the system during warming and cooling of milk in the range 10-40 °C. Changes in pH are indicative of changes to the mineral system and the turbidity is a measure of alterations to the casein micelles. The pH and turbidity showed that alterations to both the casein micelles and the mineral system occurred very rapidly on warming. However, whilst mineral re-equilibration occurred very rapidly on cooling, changes to the casein micelle structure continued after 40 min of measurement, returning to equilibrium after 16 h equilibration. Casein micelle structure and the mineral system of milk were both dependent on temperature in the range 10-40 °C. The dynamic response of the mineral system to changes in temperature appeared almost instantaneous whereas equilibration of casein was considerably slower, particularly upon cooling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2013.06.130DOI Listing

Publication Analysis

Top Keywords

casein micelles
24
mineral system
16
range 10-40
12
10-40 °c
12
changes temperature
12
casein micelle
12
casein
11
dynamic response
8
skim milk
8
alterations casein
8

Similar Publications

The gastric digestion behavior of different commercial Stage 1 infant formulae (for 0-6 months) with different formulation backgrounds was investigated using an dynamic infant human gastric simulator (iHGS). The microstructural arrangements of the protein and lipid, colloidal stability and protein hydrolysis during digestion were elucidated. During gastric digestion, casein-dominant formulations showed a higher extent of aggregation due to their high proportion of casein micelles that underwent coagulation upon acidification and via the action of pepsin.

View Article and Find Full Text PDF

This study aimed to systematically compare four casein micelle removal methods on the particle and protein characteristics of the isolated human milk EVs. The defatted milk was treated with 1% sodium citrate, 20 mM ethylenediaminetetraacetic acid (EDTA), 1% acetic acid, or 1% chymosin/calcium chloride for 30 min at 4 °C to remove casein micelles. EV isolation was performed using qEV size exclusion chromatography.

View Article and Find Full Text PDF

The influence of heating as a pretreatment on the structural and functional attributes of milk protein concentrate (MPC) powders derived from ultrafiltered/diafiltered (UF/DF) skim milk is under-reported. This research delves into the impact of pH and heat treatment on skim milk's properties before UF/DF and how these changes affect the resulting MPC powders. By adjusting the pH of skim milk to 6.

View Article and Find Full Text PDF

Three low molecular weight (LMW) sweeteners (D-tagatose, erythritol, and trehalose) were studied in yoghurt formulations to investigate their effects on syneresis, rheological properties, water distribution, and microstructural characteristics. The results indicated that trehalose improved syneresis, the fermentation process, and rheological properties compared to yoghurt fortified with sucrose, while D-tagatose and erythritol demonstrated the opposite effects on fermentation. With the addition of LMW sweeteners, the apparent viscosity and frequency sweep of yoghurt increased, with trehalose showing a better effect than sucrose or the other two LMW sweeteners.

View Article and Find Full Text PDF

Background: While low-fat yogurt offers numerous health benefits, its texture and sensory qualities are poor. This study aimed to investigate the effects of γ-polyglutamic acid (γ-PGA) on the rheological, microstructural and sensory properties of low-fat yogurt using rheological tests, scanning electron microscopy (SEM) and sensory evaluation.

Results: The results showed that the syneresis of low-fat yogurt added with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!