Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endovascular treatments for catastrophic aortic conditions have gained increasing popularity over the past 20 years. Originally developed for abdominal aortic aneurysms (EVAR), treatment has been modified for use in thoracic aortic repair (TEVAR). As expanding numbers of patients with increasingly intractable conditions and more hostile anatomies are treated, endovascular stent designs are maturing to be suitable for these more demanding situations. This article discusses the engineering considerations that apply to changing stent graft designs for current and evolving thoracic applications. The biological parameters that differentiate thoracic from abdominal aortic environments are outlined. Factors concerning materials, sealing mechanisms, deployment, stent frame architecture, and migration resistance are described, and eagerly awaited potential future developments are summarized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pcad.2013.05.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!