Baeyer-Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C-C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed us to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830731 | PMC |
http://dx.doi.org/10.1021/cb400399b | DOI Listing |
Bioorg Chem
December 2024
Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. Electronic address:
Inhibition of human concentrative nucleoside transporter 2 (CNT2) could suppress increases in serum urate levels derived from dietary purines. However, the structural basis for substrate recognition of CNT2 is still unknown and only a few inhibitors have been reported. In this study, a homology model of CNT2 was constructed and residues T315, E316, N426, N491, E492, F536 and N538 were identified as binding sites for adenosine through site-directed mutagenesis and a H-adenosine uptake assay.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany.
We present a bifunctional catalyst consisting of a copper(I)/N-heterocyclic carbene and an organocatalytic guanidine moiety that enables, for the first time, a copper(I)-catalyzed reduction of amides with H as the terminal reducing agent. The guanidine allows for reactivity tuning of the originally weakly nucleophilic copper(I) hydrides - formed in situ - to be able to react with difficult-to-reduce amides. Additionally, the guanidine moiety is key for the selective recognition of "privileged" amides based on simple and readily available heterocycles in the presence of other amides within one molecule, giving rise to hitherto unknown site-selective catalytic amide hydrogenation.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.
Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs).
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain.
Discrimination of enantiomeric substrate molecules is one of the fundamental properties of biological hosts. Replicating enantioselective molecular recognition with synthetic receptors is a topic of interest with implications in diverse applications such as bioinspired enantioselective catalysis, enantiomer separation, or sensing. In this review, five different systems reported in the literature are discussed, and their performance and versatility are analyzed.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Cancer Center, The First Hospital of Jilin University, Changchun, China.
F-box and WD repeat domain-containing 7 (FBXW7), formerly known as hCdc4, hAGO Fbw7, or SEL10, plays a specific recognition function in SCF-type E3 ubiquitin ligases. FBXW7 is a well-established cancer suppressor gene that specifically controls proteasomal degradation and destruction of many key oncogenic substrates. The FBXW7 gene is frequently abnormal in human malignancies especially in gastrointestinal cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!