A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of metabolic evolution in bacteria using whole-genome metabolic models. | LitMetric

Analysis of metabolic evolution in bacteria using whole-genome metabolic models.

J Comput Biol

Department of Life Sciences, Imperial College London, London, United Kingdom .

Published: October 2013

Recent advances in the automation of metabolic model reconstruction have led to the availability of draft-quality metabolic models (predicted reaction complements) for multiple bacterial species. These reaction complements can be considered as trait representations and can be used for ancestral state reconstruction to infer the most likely metabolic complements of common ancestors of all bacteria with generated metabolic models. We present here an ancestral state reconstruction for 141 extant bacteria and analyze the reaction gains and losses for these bacteria with respect to their lifestyles and pathogenic nature. A simulated annealing approach is used to look at coordinated metabolic gains and losses in two bacteria. The main losses of Onion yellows phytoplasma OY-M, an obligate intracellular pathogen, are shown (as expected) to be in cell wall biosynthesis. The metabolic gains made by Clostridium difficile CD196 in adapting to its current habitat in the human colon is also analyzed. Our analysis shows that the capability to utilize N-Acetyl-neuraminic acid as a carbon source has been gained, rather than having been present in the Clostridium ancestor, as has the capability to synthesize phthiocerol dimycocerosate, which could potentially aid the evasion of the host immune response. We have shown that the availability of large numbers of metabolic models, along with conventional approaches, has enabled a systematic method to analyze metabolic evolution in the bacterial domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791050PMC
http://dx.doi.org/10.1089/cmb.2013.0079DOI Listing

Publication Analysis

Top Keywords

metabolic models
16
metabolic
9
metabolic evolution
8
reaction complements
8
ancestral state
8
state reconstruction
8
gains losses
8
losses bacteria
8
metabolic gains
8
bacteria
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!