A high-fat diet is a major risk factor for atherosclerosis. We conducted a longitudinal investigation to determine whether vascular endothelial senescence is involved in the mechanism by which a high-fat diet promotes atherogenesis. We challenged 10 baboons (Papio sp.) with a high-cholesterol high-fat (HCHF) diet for 7 weeks. In addition to multiple changes in plasma lipid profiles, inflammatory status, and endothelial functions in each individual, we found that levels of total serum cholesterol (TSC) and monocyte chemotactic protein-1 (MCP-1) were negatively and significantly correlated with endothelial nitric oxide synthase (eNOS) levels in endothelial cells while the levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) were significantly correlated with nitric oxide levels in plasma within this time window. Most important, we observed that senescence-associated β-galactosidase (SA-β-gal) activities in endothelial cells harvested at 7 weeks after initiation of HCHF diet were significantly elevated by comparison with cells isolated from the same animals prior to dietary challenge. The SA-β-gal activities correlated significantly with the elevations of TSC, LDL-cholesterol, HDL-cholesterol, and IL-8 after 7 weeks of HCHF diet and with the changes of TSC and TNF-α levels after 3 weeks of HCHF diet. Our data indicate that the HCHF diet caused hyperlipidemia and prominent inflammation, which subsequently will cause endothelial dysfunction and promote senescence. The present study is the first to demonstrate the sequential and interactive changes as a consequence of an HCHF dietary challenge and establish a potential mechanism underlying the etiology of diet-induced atherogenesis in a nonhuman primate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751676PMC

Publication Analysis

Top Keywords

hchf diet
20
high-fat diet
12
diet
8
endothelial senescence
8
nitric oxide
8
endothelial cells
8
sa-β-gal activities
8
dietary challenge
8
weeks hchf
8
endothelial
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!