Objective: The purpose of this study was to assess the effect of collagen composition on engraftment of progenitor cells within infarcted myocardium.
Background: We previously reported that intramyocardial penetration of stem/progenitor cells in epicardial patches was enhanced when collagen was reduced in hearts overexpressing adenylyl cyclase-6 (AC6). In this study we hypothesized an alternative strategy wherein overexpression of microRNA-29b (miR-29b), inhibiting mRNAs that encode cardiac fibroblast proteins involved in fibrosis, would similarly facilitate progenitor cell migration into infarcted rat myocardium.
Methods: In vitro: A tri-cell patch (Tri-P) consisting of cardiac sodium-calcium exchanger-1 (NCX1) positive iPSC (iPSC(NCX1+)), endothelial cells (EC), and mouse embryonic fibroblasts (MEF) was created, co-cultured, and seeded on isolated peritoneum. The expression of fibrosis-related genes was analyzed in cardiac fibroblasts (CFb) by qPCR and Western blot. In vivo: Nude rat hearts were administered mimic miRNA-29b (miR-29b), miRNA-29b inhibitor (Anti-29b), or negative mimic (Ctrl) before creation of an ischemically induced regional myocardial infarction (MI). The Tri-P was placed over the infarcted region 7 days later. Angiomyogenesis was analyzed by micro-CT imaging and immunofluorescent staining. Echocardiography was performed weekly.
Results: The number of green fluorescent protein positive (GFP(+)) cells, capillary density, and heart function were significantly increased in hearts overexpressing miR-29b as compared with Ctrl and Anti-29b groups. Conversely, down-regulation of miR-29b with anti-29b in vitro and in vivo induced interstitial fibrosis and cardiac remodeling.
Conclusion: Overexpression of miR-29b significantly reduced scar formation after MI and facilitated iPSC(NCX1+) penetration from the cell patch into the infarcted area, resulting in restoration of heart function after MI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749126 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070023 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!