Background: The risk relevance of the P81S von Hippel-Lindau (VHL) gene hotspot mutation identified in clear cell renal cell carcinoma from individuals exposed occupationally to trichloroethylene (TCE) is not known. VHL mutations in hereditary VHL syndrome strongly correlate with phenotypic associations, but specific sporadic mutations in VHL that uniquely alter its protein function may provide a selective growth advantage for somatic cells harboring these mutations.
Methods: VHL deficient (Vhl (-/-) ) mouse embryonic stem cells were generated that stably express wild-type, P81S, or R167Q human VHL protein. Under hypoxic conditions, cell lines were examined for hypoxia-inducible transcription factor family (HIF) stabilization and E3-ubiquitin ligase complex interactions. In vivo, teratomas were examined for tumor size, proliferation, apoptosis, and immunohistochemistry and subjected to gene expression analysis. Wild-type, R167Q, and P81S VHL-expressing teratomas were also exposed to 5 Gy ionizing radiation to quantify apoptotic response. Proliferation and apoptosis and teratoma growth were analyzed by either Student t test or analysis of variance with Bonferroni correction. All statistical tests were two-sided.
Results: The P81S VHL mutation produces deregulation of HIF factors in cell culture but exhibits a growth advantage in the tumor microenvironment, in part because of suppression of apoptosis (P81S mean = 0.9%, 95% confidence interval = 0.6 to 1.2%; WT mean = 7.6%; 95% confidence interval = 6.4 to 8.8%; P < .001) coupled with sustained proliferation. Transcriptional analysis of P81S teratomas revealed the induction of metabolic pathways, antiapoptotic genes, and global suppression of key DNA damage response genes not observed in VHL wild-type or R167Q mutants. In vivo irradiation exposure showed that P81S mutant is resistant to ionizing radiation-induced apoptosis.
Conclusions: The TCE-associated P81S VHL mutation can initiate a unique adaptive response required for selective tumor growth through pleiotropic effects on metabolic diversification, apoptosis suppression, and alteration of the DNA damage response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776265 | PMC |
http://dx.doi.org/10.1093/jnci/djt226 | DOI Listing |
Br J Cancer
November 2022
CNRS UMR6290, Université Rennes 1, SFR-UMSCNRS 3480-INSERM 018, 2 ave du Pr L Bernard, 35042, Rennes, France.
Background: The von Hippel-Lindau disease is an autosomal dominant syndrome associated with tumour formation in various tissues, such as retina, central nervous system, kidney, and adrenal glands. VHL gene deletion or mutations support the development of various cancers. Unclassified VHL variants also referred as "of unknown significance" result from gene mutations that have an unknown or unclear effect on protein functions.
View Article and Find Full Text PDFG3 (Bethesda)
May 2019
Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
Trichloroethylene (TCE) and inorganic arsenic (iAs) are environmental contaminants that can target the kidney. Chronic exposure to TCE is associated with increased incidence of renal cell carcinoma, while co-exposure to TCE and iAs likely occurs in exposed human populations, such as those near Superfund sites. In order to better understand the kidney health consequences of TCE and/or iAs exposure, a genetically heterogeneous mouse population derived from FVB/NJ and CAST/EiJ mouse strains and deficient for multidrug resistance genes ( , ) was chronically exposed for 52-weeks to varying concentrations of TCE and iAs.
View Article and Find Full Text PDFCurr Genomics
February 2017
Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
Background: Evaluation of the pathogenicity of a gene variant of unknown significance (VUS) is crucial for molecular diagnosis and genetic counseling, but can be challenging. This is especially so in phenotypically variable diseases, such as von Hippel-Lindau disease (vHL). vHL is caused by germline mutations in the VHL gene, which predispose to the development of multiple tumors such as central nervous system hemangioblastomas and renal cell carcinoma (RCC).
View Article and Find Full Text PDFJ Natl Cancer Inst
September 2013
Affiliations of authors: Department of Genetics, North Carolina State University, Raleigh, NC (MCD, DWT); Department of Genetics (WKR) and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC (WKR, DWT).
Background: The risk relevance of the P81S von Hippel-Lindau (VHL) gene hotspot mutation identified in clear cell renal cell carcinoma from individuals exposed occupationally to trichloroethylene (TCE) is not known. VHL mutations in hereditary VHL syndrome strongly correlate with phenotypic associations, but specific sporadic mutations in VHL that uniquely alter its protein function may provide a selective growth advantage for somatic cells harboring these mutations.
Methods: VHL deficient (Vhl (-/-) ) mouse embryonic stem cells were generated that stably express wild-type, P81S, or R167Q human VHL protein.
J Natl Cancer Inst
September 2013
Affiliations of authors: Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD (LN, CJR, WML).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!