Luteinizing hormone receptors are confined in mesoscale plasma membrane microdomains throughout recovery from receptor desensitization.

Cell Biochem Biophys

Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.

Published: April 2014

We examined the involvement of membrane microdomains during human luteinizing hormone (LH) receptor recovery from receptor desensitization after removal of bound hormone. Lateral motions of individual desensitized LH receptors expressed on the surface of Chinese hamster ovary cells and transient association of these receptors with detergent-resistant membrane (DRM) microdomains isolated using isopycnic sucrose gradient ultracentrifugation were assessed. Single particle tracking experiments showed untreated individual LH receptors to be confined within cell-surface membrane compartments with an average diameter of 199 ± 17 nm and associated with membrane fractions characteristic of bulk plasma membrane. After brief exposure to human chorionic gonadotropin (hCG), LH receptors remained for several hours desensitized to hCG challenge. Throughout this period, significantly increased numbers of LH receptors were confined within smaller diameter (<120 nm) membrane compartments and associated with DRM fragments of characteristically low density. By 5 h, when cells again produced cAMP in response to hCG, unoccupied LH receptors were found in larger 169 ± 22 nm diameter cell-surface membrane compartments and >90 % of LH receptors were again found in high-density membrane fragments characteristic of bulk plasma membrane. Taken together, these results suggest that, during recovery from LH receptor desensitization, LH receptors are both located with DRM lipid environments and confined within small, mesoscale (80-160 nm) cell-surface compartments. This may reflect hormone-driven translocation of receptors into DRM and formation there of protein aggregates too large or too rigid to permit effective signaling. Once bound hormone is removed, receptor structures would have to dissociate before receptors can again signal effectively in response to hormone challenge. Moreover, such larger protein complexes would be more easily constrained laterally by membrane structural elements and so appear resident in smaller cell-surface compartments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938991PMC
http://dx.doi.org/10.1007/s12013-013-9738-xDOI Listing

Publication Analysis

Top Keywords

receptors confined
12
plasma membrane
12
recovery receptor
12
receptor desensitization
12
receptors
10
membrane
9
luteinizing hormone
8
membrane microdomains
8
bound hormone
8
characteristic bulk
8

Similar Publications

Olfactory receptors, classified as G-protein coupled receptors (GPCRs), have been a subject of scientific inquiry since the early 1950s. Historically, investigations into the sensory mechanisms of olfactory receptors were often confined to behavioral characteristics in model organisms or the expression of related proteins and genes. However, with the development of cryo-electron microscopy techniques, it has gradually become possible to decipher the specific structures of olfactory receptors in insects and humans.

View Article and Find Full Text PDF

Multiple receptor analysis-based DNA molecular computation has been developed to mitigate the off-target effect caused by nonspecific expression of cell membrane receptors. However, it is quite difficult to involve nanobodies into molecular computation with programmed recognition order because of the "always-on" response mode and the inconvenient molecular programming. Here we propose a spatial segregation-based molecular computing strategy with a shielded internal computing layer termed DNA nano-phage (DNP) to program nanobody into DNA molecular computation and build a series of kinetic models to elucidate the mechanism of microenvironment-confinement.

View Article and Find Full Text PDF

Aims: Progesterone receptor (PR) is a crucial prognostic marker in breast cancer. However, achieving consistent results in PR immunohistochemistry (IHC) remains challenging due to the lack of well-defined low-positive controls. This study aimed to identify benign tissues with consistent low-level PR expression to serve as ideal controls for IHC.

View Article and Find Full Text PDF

Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.

View Article and Find Full Text PDF

Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!