Effects of ischemia and reperfusion on subpopulations of rat enteric neurons expressing the P2X7 receptor.

Dig Dis Sci

Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.

Published: December 2013

Background: Intestinal ischemia followed by reperfusion (I/R) may occur following intestinal obstruction. In rats, I/R in the small intestine leads to structural changes accompanied by neuronal death.

Aim: To analyze the impact of I/R injury on different neuronal populations in the myenteric plexus of rat ileum.

Methods: The ileal artery was occluded for 35 min and animals were euthanized 6, 24, and 72 h, and 1 week later. Immunohistochemistry was performed with antibodies against the P2X7 receptor as well as nitric oxide synthase (NOS), calbindin, calretinin, choline acetyltransferase (ChAT), or the pan-neuronal marker anti-HuC/D.

Results: Double immunolabeling demonstrated that 100% of NOS-, calbindin-, calretinin-, and ChAT-immunoreactive neurons in all groups expressed the P2X7 receptor. Following I/R, neuronal density decreased by 22.6% in P2X7 receptor-immunoreactive neurons, and decreased by 46.7, 38, 39.8, 21.7, and 20% in NOS-, calbindin-, calretinin-, ChAT-, and HuC/D-immunoreactive neurons, respectively, at 6, 24, and 72 h and 1 week following injury compared to the control and sham groups. We also observed a 14% increase in the neuronal cell body profile area of the NOS-immunoreactive neurons at 6 and 24 h post-I/R and a 14% increase in ChAT-immunoreactive neurons at 1 week following I/R. However, the average size of the calretinin-immunoreactive neurons was reduced by 12% at 6 h post-I/R and increased by 8% at 24 h post-I/R.

Conclusions: This work demonstrates that I/R is associated with a significant loss of different subpopulations of neurons in the myenteric plexus accompanied by morphological changes, all of which may underlie conditions related to intestinal motility disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10620-013-2847-yDOI Listing

Publication Analysis

Top Keywords

p2x7 receptor
12
ischemia reperfusion
8
neurons
8
myenteric plexus
8
nos- calbindin-
8
calbindin- calretinin-
8
chat-immunoreactive neurons
8
neurons week
8
14% increase
8
i/r
6

Similar Publications

Repeated administration of a subanesthetic dose of ketamine results in impaired motor and cognitive behavior and differential expression of hippocampal P2X1 and P2X7 receptors in adult mice.

Behav Brain Res

January 2025

Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico. Electronic address:

Ketamine hydrochloride serves multiple purposes, including its use as a general anesthetic, treatment for depression, and recreational drug. In studies involving rodents, ketamine is utilized as a model for schizophrenia. However, it is unclear whether age affects the behavioral response induced by repeated ketamine administration and if it modifies the expression levels of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and purinergic receptors (P2X1, P2X4, P2X7).

View Article and Find Full Text PDF

Depression is a mental health disorder and is the fourth most prevalent disease. Previous studies have suggested that statins are involved in the reduction of neuroinflammation. However, the potential mechanism for this relationship is unclear.

View Article and Find Full Text PDF

The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes.

View Article and Find Full Text PDF

Repurposing the familiar: Future treatment options against chronic kidney disease.

J Pharm Pharmacol

January 2025

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India.

Objectives: Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects.

View Article and Find Full Text PDF

P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!