Signaling pathways are reused for multiple purposes in plant and animal development. The Hippo pathway in mammals and Drosophila coordinates proliferation and apoptosis via the coactivator and oncoprotein YAP/Yorkie (Yki), which is homeostatically regulated through negative feedback. In the Drosophila eye, cross-repression between the Hippo pathway kinase LATS/Warts (Wts) and growth regulator Melted generates mutually exclusive photoreceptor subtypes. Here, we show that this all-or-nothing neuronal differentiation results from Hippo pathway positive feedback: Yki both represses its negative regulator, warts, and promotes its positive regulator, melted. This postmitotic Hippo network behavior relies on a tissue-restricted transcription factor network-including a conserved Otx/Orthodenticle-Nrl/Traffic Jam feedforward module-that allows Warts-Yki-Melted to operate as a bistable switch. Altering feedback architecture provides an efficient mechanism to co-opt conserved signaling networks for diverse purposes in development and evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796000PMC
http://dx.doi.org/10.1126/science.1238016DOI Listing

Publication Analysis

Top Keywords

hippo pathway
16
regulator melted
8
hippo
5
opposite feedbacks
4
feedbacks hippo
4
pathway
4
pathway growth
4
growth control
4
control neural
4
neural fate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!