Background: Understanding the biological mechanisms of why certain fractures are at risk for delayed healing or nonunion requires translational animal models that take advantage of transgenic and other genetic manipulation technologies. Reliable murine nonunion models can be an important tool to understand the biology of nonunion. In this study, we report the results of a recently established model for creating critical defects that lead to atrophic nonunions based on a unique fracture fixation technique.
Materials And Methods: Subcritical (0.6 mm long) and critical (1.6 mm long) defects were created in femurs of 10-week-old double transgenic (Col1/Col2) mice and stabilized using a custom-designed plate and four screws. Four groups were used: normal, sham, subcritical, and critical. Histology (n = 3 for each group) was analyzed at 2 and 5 weeks, and micro-computed tomography (μCT) and torsional biomechanics (n = 12 for each group) were analyzed at 5 weeks.
Results: Subcritical defects showed healing at 2 weeks and were completely healed by 5 weeks, with biomechanical properties not significantly different from normal controls. However, critical defects showed no healing by histology or μCT. These nonunion fractures also displayed no torsional stiffness or strength in 10 of 12 cases.
Conclusions: Our murine fracture model creates reproducible and reliable nonunions and can serve as an ideal platform for studying molecular pathways to contrast healing versus nonhealing events and for evaluating innovative therapeutic approaches to promote healing of a challenging osseous injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828495 | PMC |
http://dx.doi.org/10.1007/s10195-013-0269-4 | DOI Listing |
Tissue Eng Part A
December 2024
Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China.
Senescence and osteogenic differentiation potential loss limited bone nonunion treatment effects of bone marrow-derived mesenchymal stem cells (BMSCs). MiR-100-5p/Lysine(K)-specific demethylase 6B (KDM6B) can inhibit osteogenesis, but their effects on bone union remain unclear. This study aims to investigate the effects of miR-100-5p/KDM6B on osteogenic differentiation and bone defects.
View Article and Find Full Text PDFNat Commun
December 2024
Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
Critical-sized bone defects are usually accompanied by bacterial infection leading to inflammation and bone nonunion. However, existing biodegradable materials lack long-term therapeutical effect because of their gradual degradation. Here, a degradable material with continuous ROS modulation is proposed, defined as a sonozyme due to its functions as a sonosensitizer and a nanoenzyme.
View Article and Find Full Text PDFPhysiol Res
November 2024
Department of Orthopedic Surgery, Qing Hai University Affiliated Hospital, Xining, Qinghai, China; Department of Pain Physiotherapy, People's Hospital of Rizhao, Rizhao, Shandong,
Bone nonunion delays fracture end repair and is associated with inflammation. Although bone nonunion can be effectively repaired in clinical practice, many cases of failure. Studies have confirmed that BMP-2 and nHA/PA66 repaired bone defects successfully.
View Article and Find Full Text PDFJ Orthop Res
November 2024
Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA.
The field of bone regeneration has primarily focused on investigating fracture healing and nonunion in isolated musculoskeletal injuries. Compared to isolated fractures, which frequently heal well, fractures in patients with multiple bodily injuries (polytrauma) may exhibit impaired healing. While some papers have reported the overall cytokine response to polytrauma conditions, significant gaps in our understanding remain in how fractures heal differently in polytrauma patients.
View Article and Find Full Text PDFJ Orthop Surg Res
November 2024
Department of Orthopaedic and Traumatology, Afyonkarahisar Health Science University, Afyonkarahisar, Turkey.
Background: Biomaterials used in fracture healing hold a significant place in orthopedics. This study aimed to develop biomaterials coated with hydroxyapatite (HA), boric acid (BA), and magnesium (Mg) and investigate their effects on fracture healing.
Methods: Sixty female Wistar Albino rats were included in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!