Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
: Recent developments in the field of biocatalysis using permeabilized cells are reviewed here, with a special emphasis on the newly emerging area of multistep biocatalysis using permeabilized cells. New methods of metabolic engineering using in silico network design and new methods of genetic engineering provide the opportunity to design more complex biocatalysts for the synthesis of complex biomolecules. Methods for the permeabilization of cells are thoroughly reviewed. We provide an extended review of useful available databases and bioinformatics tools, particularly for setting up genome-scale reconstructed networks. Examples described include phosphorylated carbohydrates, sugar nucleotides, and polyketides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/10_2013_240 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!