Some like it cold: summer torpor by freetail bats in the Australian arid zone.

J Comp Physiol B

Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia,

Published: December 2013

Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010-2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one "morning" torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-013-0779-7DOI Listing

Publication Analysis

Top Keywords

torpor
11
freetail bats
8
torpor bout
8
torpor bouts
8
bats
7
cold summer
4
summer torpor
4
torpor freetail
4
bats australian
4
australian arid
4

Similar Publications

Advanced lipidomics using UHPLC-ESI-QTOF-MS/MS reveals novel lipids in hibernating syrian hamsters.

J Chromatogr A

January 2025

Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte 28660, España. Electronic address:

Mammalian hibernation offers a unique model for exploring neuroprotective mechanisms relevant to neurodegenerative diseases. In this study, we employed untargeted lipidomics with iterative tandem mass spectrometry (MS/MS) to profile the brain lipidome of Syrian hamsters across different hibernation stages: late torpor, arousal, and euthermia (control). Previously, a lipid species identified as methyl-PA(16:0/0:0) showed a significant increase during torpor, but its precise structure was unresolved due to technological constraints.

View Article and Find Full Text PDF

Identification of hypothermia-inducing neurons in the preoptic area and activation of them by isoflurane anesthesia and central injection of adenosine.

J Physiol Sci

January 2025

Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, 890-8544, Kagoshima, Japan. Electronic address:

Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons.

View Article and Find Full Text PDF

Nail growth arrest under low body temperature during hibernation.

J Physiol Sci

January 2025

Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan; Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan; Inamori Research Institute for Science Fellowship (InaRIS), Kyoto, Japan. Electronic address:

Growth and differentiation are reduced or stopped during hibernation, an energy conserving strategy in harsh seasons by lowered metabolism and body temperature. However, few studies evaluated this in a same individual using a non-invasive method. In this study, we applied a non-invasive tracking method of the nail growth throughout the hibernation period in the same hibernating animals, the Syrian hamster (Mesocricetus auratus).

View Article and Find Full Text PDF

Hibernating mammals such as the thirteen-lined ground squirrel () experience significant reductions in oxidative metabolism and body temperature when entering a state known as torpor. Animals entering or exiting torpor do not experience permanent loss of brain function or other injuries, and the processes that enable such neuroprotection are not well understood. To gain insight into changes in protein function that occur in the dramatically different physiological states of hibernation, we performed quantitative phosphoproteomics experiments on thirteen-lined ground squirrels that are summer-active, winter-torpid, and spring-active.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!