High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction data from ribosome microcrystals in liquid suspension at ambient temperature is described. 30S ribosomal subunit microcrystals diffracted to beyond 6 Å resolution, demonstrating the feasibility of using SFX for ribosome structural studies. The ability to collect diffraction data at near-physiological temperatures promises to provide fundamental insights into the structural dynamics of the ribosome and its functional complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758164PMC
http://dx.doi.org/10.1107/S174430911302099XDOI Listing

Publication Analysis

Top Keywords

serial femtosecond
8
femtosecond x-ray
8
30s ribosomal
8
ribosomal subunit
8
subunit microcrystals
8
microcrystals liquid
8
liquid suspension
8
suspension ambient
8
ambient temperature
8
x-ray free-electron
8

Similar Publications

An analysis of the structural changes of the oxygen evolving complex of Photosystem II in the S and S states revealed by serial femtosecond crystallography.

Biochim Biophys Acta Bioenerg

December 2024

Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The MnOCa cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O and releasing protons to the lumen and electrons to drive PSII reactions.

View Article and Find Full Text PDF

Sample efficient approaches in time-resolved X-ray serial crystallography and complementary X-ray emission spectroscopy using drop-on-demand tape-drive systems.

Methods Enzymol

November 2024

Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom. Electronic address:

Dynamic structural biology enables studying biological events at the atomic scale from 10's of femtoseconds to a few seconds duration. With the advent of X-ray Free Electron Lasers (XFELs) and 4th generation synchrotrons, serial crystallography is becoming a major player for time-resolved experiments in structural biology. Despite significant progress, challenges such as obtaining sufficient amounts of protein to produce homogeneous microcrystal slurry, remain.

View Article and Find Full Text PDF

Use of fixed targets for serial crystallography.

Methods Enzymol

November 2024

Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom. Electronic address:

Article Synopsis
  • Serial crystallography involves sequentially delivering microcrystals to an X-ray beam to capture diffraction patterns, primarily using X-ray Free Electron Lasers (XFELs) and increasingly synchrotron experiments.
  • This method allows for time-resolved studies without radiation damage to the crystals, enabling researchers to gather data over a vast range of time scales, from femtoseconds to seconds.
  • The fixed target approach in this technique offers advantages such as maximizing crystal usage for data collection and precise control for timing experiments, with notable applications at the Diamond Light Source and SACLA XFEL.
View Article and Find Full Text PDF

Experimental approaches for time-resolved serial femtosecond crystallography at PAL-XFEL.

Methods Enzymol

November 2024

College of General Education, Kookmin University, Seoul, Republic of Korea. Electronic address:

Understanding the structures and dynamics of biomolecules and chemical compounds is crucial for deciphering their molecular functions and mechanisms. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) is a useful technique for determining structures at room temperature, while minimizing radiation damage. Time-resolved serial femtosecond crystallography (TR-SFX), which uses an optical laser or a mixing device, allows molecular dynamic visualization during a reaction at specific time points.

View Article and Find Full Text PDF

Sample delivery for structural biology at the European XFEL.

Methods Enzymol

November 2024

European XFEL, Schenefeld, Germany.

Serial femtosecond crystallography (SFX) at X-ray free electron lasers (XFELs) is a valuable technique for time-resolved structural studies on enzymes. This method allows for the collection of high-resolution datasets of protein structures at various time points during a reaction initiated by light or mixing. Experiments are performed under non-cryogenic conditions and allow the collection of radiation damage free structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!