High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction data from ribosome microcrystals in liquid suspension at ambient temperature is described. 30S ribosomal subunit microcrystals diffracted to beyond 6 Å resolution, demonstrating the feasibility of using SFX for ribosome structural studies. The ability to collect diffraction data at near-physiological temperatures promises to provide fundamental insights into the structural dynamics of the ribosome and its functional complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758164 | PMC |
http://dx.doi.org/10.1107/S174430911302099X | DOI Listing |
Biochim Biophys Acta Bioenerg
December 2024
Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The MnOCa cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O and releasing protons to the lumen and electrons to drive PSII reactions.
View Article and Find Full Text PDFMethods Enzymol
November 2024
Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom. Electronic address:
Dynamic structural biology enables studying biological events at the atomic scale from 10's of femtoseconds to a few seconds duration. With the advent of X-ray Free Electron Lasers (XFELs) and 4th generation synchrotrons, serial crystallography is becoming a major player for time-resolved experiments in structural biology. Despite significant progress, challenges such as obtaining sufficient amounts of protein to produce homogeneous microcrystal slurry, remain.
View Article and Find Full Text PDFMethods Enzymol
November 2024
Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom. Electronic address:
Methods Enzymol
November 2024
College of General Education, Kookmin University, Seoul, Republic of Korea. Electronic address:
Understanding the structures and dynamics of biomolecules and chemical compounds is crucial for deciphering their molecular functions and mechanisms. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) is a useful technique for determining structures at room temperature, while minimizing radiation damage. Time-resolved serial femtosecond crystallography (TR-SFX), which uses an optical laser or a mixing device, allows molecular dynamic visualization during a reaction at specific time points.
View Article and Find Full Text PDFMethods Enzymol
November 2024
European XFEL, Schenefeld, Germany.
Serial femtosecond crystallography (SFX) at X-ray free electron lasers (XFELs) is a valuable technique for time-resolved structural studies on enzymes. This method allows for the collection of high-resolution datasets of protein structures at various time points during a reaction initiated by light or mixing. Experiments are performed under non-cryogenic conditions and allow the collection of radiation damage free structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!