We present a phenomenological model and finite element simulations to describe the depth variation of mass density and strain of ion-implanted single-crystal diamond. Several experiments are employed to validate the approach: firstly, samples implanted with 180 keV B ions at relatively low fluences are characterized using high-resolution x-ray diffraction; secondly, the mass density variation of a sample implanted with 500 keV He ions, well above its amorphization threshold, is characterized with electron energy loss spectroscopy. At high damage densities, the experimental depth profiles of strain and density display a saturation effect with increasing damage and a shift of the damage density peak towards greater depth values with respect to those predicted by TRIM simulations, which are well accounted for in the model presented here. The model is then further validated by comparing transmission electron microscopy-measured and simulated thickness values of a buried amorphous carbon layer formed at different depths by implantation of 500 keV He ions through a variable-thickness mask to simulate the simultaneous implantation of ions at different energies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/25/38/385403DOI Listing

Publication Analysis

Top Keywords

mass density
8
direct measurement
4
measurement modelling
4
modelling internal
4
internal strains
4
strains ion-implanted
4
ion-implanted diamond
4
diamond phenomenological
4
phenomenological model
4
model finite
4

Similar Publications

Usefulness of Myelin Quantification Using Synthetic Magnetic Resonance Imaging for Predicting Outcomes in Patients With Acute Ischemic Stroke.

Stroke

January 2025

Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (M.T., T.N., S.A., H.M.).

Background: Synthetic magnetic resonance imaging (MRI) is an innovative MRI technology that enables the acquisition of multiple quantitative values, including T1 and T2 values, proton density, and myelin volume, in a single scan. Although the usefulness of myelin measurement with synthetic MRI has been reported for assessing several diseases, investigations in patients with stroke have not been reported. We aimed to explore the utility of myelin quantification using synthetic MRI in predicting outcomes in patients with acute ischemic stroke.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe-N-C Oxygen Reduction Catalysts.

Angew Chem Int Ed Engl

January 2025

Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.

Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.

View Article and Find Full Text PDF

Ruthenium (Ru)-based electrocatalysts have shown promise for anion exchange membrane water electrolysis (AEMWE) due to their ability to facilitate water dissociation in the hydrogen evolution reaction (HER). However, their performance is limited by strong hydrogen binding, which hinders hydrogen desorption and water re-adsorption. This study reports the development of RuNi nanoalloys supported on MoO, which optimize the hydrogen binding strength at Ru sites through modulation by adjacent Ni atoms.

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!