Excessive action of angiotensin II on mitochondria has been shown to play an important role in mitochondrial dysfunction, a common feature of atherogenesis and kidney injury. Angiotensin-(1-7)/Mas receptor axis constitutes a countermeasure to the detrimental effects of angiotensin II on AT1 receptors. The aim of the study was to assess the effects of angiotensin-(1-7) peptidomimetic AVE0991 on the kidney mitochondrial proteome in widely used animal model of atherosclerosis (apoE(-/-) mice). Proteins changed in apoE(-/-) mice belonged to the groups of antioxidant enzymes, apoptosis regulators, inflammatory factors and metabolic enzymes. Importantly, AVE0991 partially reversed atherosclerosis-related changes in apoE(-/-) mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2013.08.008DOI Listing

Publication Analysis

Top Keywords

apoe-/- mice
12
mitochondrial proteome
8
influence angiotensin-1-7
4
angiotensin-1-7 mas
4
mas receptor
4
receptor agonist
4
agonist ave
4
ave 0991
4
0991 mitochondrial
4
proteome kidneys
4

Similar Publications

Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosis.

In Vitro Cell Dev Biol Anim

January 2025

College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.

The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.

View Article and Find Full Text PDF

Large-scale studies indicate a strong relationship between the gut microbiome, type 2 diabetes mellitus (T2DM), and atherosclerotic cardiovascular disease (ASCVD). Here, a higher abundance of the type III secretion system (T3SS) virulence factors of Enterobacteriaceae/Escherichia-Shigella in patients with T2DM-related-ASCVD, which correlates with their atherosclerotic stenosis is reported. Overexpression of T3SS via Citrobacter rodentium (CR) infection in Apoe-/- T2DM mice exacerbated atherosclerotic lesion formation and increased gut permeability.

View Article and Find Full Text PDF

Endothelial Gsα deficiency promotes ferroptosis and exacerbates atherosclerosis in apolipoprotein E-deficient mice via the inhibition of NRF2 signaling.

Acta Pharmacol Sin

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.

The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.

View Article and Find Full Text PDF

This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!