Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites.

J Phys Condens Matter

Department of Physics and Astronomy, The University of Western Ontario, London, N6A 3K7, Canada.

Published: September 2013

Nonlinear two-photon absorption in a quantum dot-graphene nanoflake nanocomposite system has been investigated. An external laser field is applied to the nanocomposite to simultaneously observe two-photon processes in the quantum dot and excite localized surface plasmons in the graphene nanodisk. This resonance condition can be achieved by tuning the plasmon resonance frequency in the graphene nanoflake via electrostatic gating. It is found that the strong local field of the graphene plasmons can enhance and control nonlinear optical processes in the quantum dot. Specifically, we show that the two-photon absorption coefficient in the quantum dot can be switched between single- and double-peaked spectra by modifying the graphene-quantum dot separation. Two-photon processes in the quantum dot can also be switched on or off by slightly changing the gate voltage applied to the graphene. Our findings indicate that this system can be used for nonlinear optical applications such as all-optical switching, biosensing and signal processing.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/25/38/385302DOI Listing

Publication Analysis

Top Keywords

quantum dot
16
two-photon absorption
12
processes quantum
12
control nonlinear
8
nonlinear two-photon
8
two-photon processes
8
nonlinear optical
8
dot switched
8
two-photon
5
graphene
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!