The sodium/iodide symporter: state of the art of its molecular characterization.

Biochim Biophys Acta

SBTN, bât 170, centre de Marcoule, BP 17171, 30207 Bagnols sur Cèze CEDEX, France; Laboratoire TIRO, Faculté de médecine, Université de Nice Sophia-Antipolis, 28 Avenue de Valombrose, 06107 Nice CEDEX, France; CAL, TIRO, F-06107 Nice, France. Electronic address:

Published: January 2014

The sodium/iodide symporter (NIS or SLC5A5) is an intrinsic membrane protein implicated in iodide uptake into thyroid follicular cells. It plays a crucial role in iodine metabolism and thyroid regulation and its function is widely exploited in the diagnosis and treatment of benign and malignant thyroid diseases. A great effort is currently being made to develop a NIS-based gene therapy also allowing the radiotreatment of nonthyroidal tumors. NIS is also expressed in other tissues, such as salivary gland, stomach and mammary gland during lactation, where its physiological role remains unclear. The molecular identity of the thyroid iodide transporter was elucidated approximately fifteen years ago. It belongs to the superfamily of sodium/solute symporters, SSS (and to the human transporter family, SLC5), and is composed of 13 transmembrane helices and 643 amino acid residues in humans. Knowledge concerning NIS structure/function relationship has been obtained by taking advantage of the high resolution structure of one member of the SSS family, the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT), and from studies of gene mutations leading to congenital iodine transport defects (ITD). This review will summarize current knowledge regarding the molecular characterization of NIS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2013.08.013DOI Listing

Publication Analysis

Top Keywords

sodium/iodide symporter
8
molecular characterization
8
symporter state
4
state art
4
art molecular
4
characterization sodium/iodide
4
nis
4
symporter nis
4
nis slc5a5
4
slc5a5 intrinsic
4

Similar Publications

Background: Perchlorate, nitrate, and thiocyanate are well-known sodium/iodide symporter (NIS) inhibitors that disturb iodide uptake at the thyroid, affecting thyroid function. However, the associations between NIS inhibitor exposure and thyroid function are not well summarized in humans.

Objective: We aimed to summarize associations between NIS inhibitor exposure and thyroid function markers and to identify key information gaps for future studies.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) exposure is associated with radioiodine therapy resistance and dedifferentiation of differentiated thyroid cancer.

Environ Pollut

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China. Electronic address:

Differentiated thyroid cancer (DTC) generally has a favorable prognosis, and radioactive iodine (RAI) therapy is typically used for metastatic DTC that continues to progress and poses life-threatening risks. However, resistance to RAI in metastatic DTC significantly impairs treatment effectiveness. This study aims to identify potential compounds that may influence RAI efficacy.

View Article and Find Full Text PDF

Functional characterization of novel compound heterozygous missense gene variants causing congenital dyshormonogenic hypothyroidism.

Front Endocrinol (Lausanne)

January 2025

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.

Introduction: The sodium/iodide symporter (NIS) mediates active iodide accumulation in the thyroid follicular cell. Biallelic loss-of-function variants in the NIS-coding gene cause congenital dyshormonogenic hypothyroidism due to a defect in the accumulation of iodide, which is required for thyroid hormonogenesis.

Objective: We aimed to identify, and if so to functionally characterize, novel pathogenic gene variants in a patient diagnosed with severe congenital dyshormonogenic hypothyroidism characterized by undetectable radioiodide accumulation in a eutopic thyroid gland, as well as in the salivary glands.

View Article and Find Full Text PDF

Unlabelled: We report here transport of the Epidermal Growth Factor Receptor (EGFR), Insulin Receptor, 7-pass transmembrane receptor Smoothened, and 13-pass Sodium-iodide symporter to extracellular vesicles (EVs) for structural and functional studies. Mass spectrometry confirmed the transported proteins as the most abundant in EV membranes, and the presence of many receptor-interacting proteins demonstrates the utility of EVs for characterizing membrane protein interactomes. Cryo-electron tomography of EGFR-containing EVs reveals that EGFR forms clusters in the presence of EGF with a ∼3 nm gap between the inner membrane and cytoplasmic density.

View Article and Find Full Text PDF

The effects of ten test chemicals towards thyroid sodium-iodide symporter (NIS), thyroid peroxidase (TPO), and deiodinases (DIOs) type I, II, and III were evaluated in in vitro rat and human systems and compared. Test chemicals known to directly affect TH levels in vivo were confirmed to effectively inhibit at least one of the tested in vitro endpoints, without significant disparities between species, and the tested compounds known to not affect thyroid function, were found ineffective. Interestingly, Iodide Transport Blocker 5, a potent non-competitive iodine uptake inhibitor, exhibited effects beyond direct NIS inhibition, by impacting NIS function through ATP depletion, and also inhibited TPO and DIO1/2 enzymes, although to a lesser extent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!