Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The excess Fe atoms which unavoidably exist in the Fe(Te, Se, S) crystal lattice result in a complicated antiferromagnetic ground state as well as the suppression of superconductivity. As a result, there are still discrepancies on their phase diagrams. In this paper, we report the synthesis of Fe1+δTe1-xSx (0 ≤ x ≤ 0.12) single crystals by a melting method. Superconductivity was greatly improved after air annealing by which we partially removed the excess Fe atoms. Based on the resistivity and susceptibility measurements, we concluded a phase diagram of the Fe1+δTe1-xSx (0 ≤ x ≤ 0.12) system with fewer excess iron atoms. We found a coexisting region (0.07 ≤ x ≤ 0.11) of antiferromagnetic order and bulk superconductivity. This phase diagram is similar to that of the K- or Co-doped BaFe2As2 system, as well as the Fe(Te, Se) system, implying a commonality of the iron-based superconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/25/38/385701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!