Phase diagram and annealing effect for Fe1+δTe1-xSx single crystals.

J Phys Condens Matter

Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China.

Published: September 2013

The excess Fe atoms which unavoidably exist in the Fe(Te, Se, S) crystal lattice result in a complicated antiferromagnetic ground state as well as the suppression of superconductivity. As a result, there are still discrepancies on their phase diagrams. In this paper, we report the synthesis of Fe1+δTe1-xSx (0 ≤ x ≤ 0.12) single crystals by a melting method. Superconductivity was greatly improved after air annealing by which we partially removed the excess Fe atoms. Based on the resistivity and susceptibility measurements, we concluded a phase diagram of the Fe1+δTe1-xSx (0 ≤ x ≤ 0.12) system with fewer excess iron atoms. We found a coexisting region (0.07 ≤ x ≤ 0.11) of antiferromagnetic order and bulk superconductivity. This phase diagram is similar to that of the K- or Co-doped BaFe2As2 system, as well as the Fe(Te, Se) system, implying a commonality of the iron-based superconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/25/38/385701DOI Listing

Publication Analysis

Top Keywords

phase diagram
12
single crystals
8
excess atoms
8
fe1+δte1-xsx 0 ≤ x ≤ 012
8
phase
4
diagram annealing
4
annealing for fe1+δte1-xsx
4
for fe1+δte1-xsx single
4
crystals excess
4
atoms unavoidably
4

Similar Publications

We systematically investigate the magnetization and thermodynamic responses associated with antiferromagnetic (AFM) transitions in single crystals of the magnetic semiconductor Eu3InAs3. The linear thermal expansion measurements around the AFM transition temperatures, TN1 and TN2, indicate an expansion along the a axis and contraction along the b and c axes. The calculated ∆V/V(T) shows a continuous change at TN, indicating a second-order magnetic phase transition.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues.

View Article and Find Full Text PDF

The cryopreservation of human spermatozoa is an integral part of cryobiology, aiming to support the in-vitro fertilization. The latter relies on the availability of as much as possible reproductively active spermatozoa, whose number after thawing decreases due to the accompanied freezing injury and the cytotoxicity of cryoprotectants. An innovative option to circumvent these obstacles is to make the freezing interface non-wettable, by coating it with rapeseed oil soot possessing intrinsic cryoprotective properties, delaying the ice formation and possibly providing identical rates of intracellular dehydration and extracellular crystallization.

View Article and Find Full Text PDF

Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).

View Article and Find Full Text PDF

Extreme Synergy in the Random-Energy Model.

Phys Rev Lett

December 2024

Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.

The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!