Pulsed-laser deposited transition-metal carbides for field-emission cathode coatings.

ACS Appl Mater Interfaces

Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base , 3005 Hobson Way, Ohio 45433, United States.

Published: September 2013

Thin films of transition-metal carbides ZrC, HfC, and TiC were deposited by pulsed-laser deposition under vacuum. The surface chemistry of the films was characterized with ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy in situ. X-ray diffraction was used to characterize the film structure. TiC was shown to be nearly stoichiometric and polycrystalline. The TiC was applied to a vertically aligned carbon nanotube sample and characterized by field emission. Field-emission results showed enhanced current and current density at a film thickness, 5 nm, not previously reported in the literature. Emission from TiC films was also shown to be less affected by adsorbates during field emission. Pulsed-laser deposition of TiC offers a distinct advantage over other techniques in that high-quality films can be obtained under ultrahigh vacuum conditions without the use of a reactive background gas or excessively high annealing temperatures. The application of TiC by pulsed-laser deposition as a cathode coating shows potential for integration into a fabrication process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am403362wDOI Listing

Publication Analysis

Top Keywords

pulsed-laser deposition
12
transition-metal carbides
8
photoelectron spectroscopy
8
field emission
8
tic
6
pulsed-laser
4
pulsed-laser deposited
4
deposited transition-metal
4
carbides field-emission
4
field-emission cathode
4

Similar Publications

Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.

View Article and Find Full Text PDF

Large enhancement of ferroelectric properties of perovskite oxides via nitrogen incorporation.

Sci Adv

January 2025

State Key Laboratory of Advanced Welding and Joining of Materials and Structures, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.

Perovskite oxides have a wide variety of physical properties that make them promising candidates for versatile technological applications including nonvolatile memory and logic devices. Chemical tuning of those properties has been achieved, to the greatest extent, by cation-site substitution, while anion substitution is much less explored due to the difficulty in synthesizing high-quality, mixed-anion compounds. Here, nitrogen-incorporated BaTiO thin films have been synthesized by reactive pulsed-laser deposition in a nitrogen growth atmosphere.

View Article and Find Full Text PDF

Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces.

Nanomaterials (Basel)

December 2024

Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!