Twinning superlattice formation in GaAs nanowires.

ACS Nano

Department of Electronic Materials Engineering, Research School of Physics and Engineering and ‡Centre for Advanced Microscopy, The Australian National University, Canberra, ACT 0200, Australia.

Published: September 2013

Semiconductor nanowires have proven a versatile platform for the realization of novel structures unachievable by traditional planar epitaxy techniques. Among these, the periodic arrangement of twin planes to form twinning superlattice structures has generated particular interest. Here we demonstrate twinning superlattice formation in GaAs nanowires and investigate the diameter dependence of both morphology and twin plane spacing. An approximately linear relationship is found between plane spacing and nanowire diameter, which contrasts with previous results reported for both InP and GaP. Through modeling, we relate this to both the higher twin plane surface energy of GaAs coupled with the lower supersaturation relevant to Au seeded GaAs nanowire growth. Understanding and modeling the mechanism of twinning superlattice formation in III-V nanowires not only provides fundamental insight into the growth process, but also opens the door to the possibility of tailoring twin spacing for various electronic and mechanical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn403390tDOI Listing

Publication Analysis

Top Keywords

twinning superlattice
16
superlattice formation
12
formation gaas
8
gaas nanowires
8
twin plane
8
plane spacing
8
twinning
4
gaas
4
nanowires
4
nanowires semiconductor
4

Similar Publications

The superlattice obtained by aligning a monolayer graphene and boron nitride (BN) inherits from the hexagonal lattice a sixty degrees periodicity with the layer alignment. It implies that, in principle, the properties of the heterostructure must be identical for 0° and 60° of layer alignment. Here, we demonstrate, using dynamically rotatable van der Waals heterostructures, that the moiré superlattice formed in a bilayer graphene/BN has different electronic properties at 0° and 60° of alignment.

View Article and Find Full Text PDF

Selective area growth of in-plane InAs nanowires and nanowire networks on Si substrates by molecular-beam epitaxy.

Nanotechnology

November 2023

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, People's Republic of China.

In-plane InAs nanowires and nanowire networks show great potential to be used as building blocks for electronic, optoelectronic and topological quantum devices, and all these applications are keen to grow the InAs materials directly on Si substrates since it may enable nanowire electronic and quantum devices with seamless integration with Si platform. However, almost all the in-plane InAs nanowires and nanowire networks have been realized on substrates of III-V semiconductors. Here, we demonstrate the selective area epitaxial growth of in-plane InAs nanowires and nanowire networks on Si substrates.

View Article and Find Full Text PDF

Modern cryptography attributes the security of a cryptographic system to the security of the key. How to securely distribute the key has always been a bottleneck in key management. This paper proposes a secure group key agreement scheme for multiple parties using a multiple twinning superlattice physical unclonable function (PUF) that can be synchronized.

View Article and Find Full Text PDF

Programming the morphology of DNA origami crystals by magnesium ion strength.

Proc Natl Acad Sci U S A

July 2023

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.

Harnessing the programmable nature of DNA origami for controlling structural features in crystalline materials affords opportunities to bring crystal engineering to a remarkable level. However, the challenge of crystallizing a single type of DNA origami unit into varied structural outcomes remains, given the requirement for specific DNA designs for each targeted structure. Here, we show that crystals with distinct equilibrium phases and shapes can be realized using a single DNA origami morphology with an allosteric factor to modulate the binding coordination.

View Article and Find Full Text PDF

Control over the distribution of dopants in nanowires is essential for regulating their electronic properties, but perturbations in nanowire microstructure may affect doping. Conversely, dopants may be used to control nanowire microstructure including the generation of twinning superlattices (TSLs)-periodic arrays of twin planes. Here the spatial distribution of Be dopants in a GaAs nanowire with a TSL is investigated using atom probe tomography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!