The aim of this study was the surface modification of wool fibers to confer a multifunctional finishing to the fabrics, improving the textile value and its applications without damage of comfort properties. The attention was focused on an economical and environmental friendly process to obtain an effective treatment with good durability to washing. Chitosan in acetic acid solution was applied by padding, and grafted by ultraviolet radiation, through radical reactions promoted by a photoinitiator. 2% chitosan grafted was enough to confer satisfactory antimicrobial activity (67% reduction of Escherichia coli) after an oxidative wool pre-treatment and 1h impregnation at 50 °C. Moreover treated wool fabrics showed a strong dyeability increase toward acid dye. However the evaluation of the treatment durability to laundering showed different behavior depending on the nature of the surfactants. Finally, anti-felting properties with respect to untreated fabrics were revealed, while no effect was shown toward anti-pilling properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2013.06.054 | DOI Listing |
Int J Biol Macromol
January 2025
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.
The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated.
View Article and Find Full Text PDFLangmuir
January 2025
College of Light Industry and Materials, Chengdu Textile College, Chengdu, Sichuan 610039, China.
The treatment of oily wastewater and oil/water mixtures has received more and more attention. In this study, a Zn-MOF (ZIF-8) decorated polyimide (PI) nanofiber membrane with triple self-cleaning performance was constructed, and the decoration of ZIF-8 on the PI membrane improved the hydrophilicity of the composite membrane, which further enhanced the underwater oil resistance, and the mechanical properties of the membranes improved significantly with the increase of in situ growth time. In addition, the inherent photocatalytic and antibacterial properties of ZIF-8 endowed the membranes with fantastic performance.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Textiles and Garment, Liaodong University, Dandong 118003, China.
The development of functional textiles has become a key focus in recent years, aiming to meet the diverse requirements of modern society. MXene has excellent conductivity, hydrophilicity, and UV resistance, and is widely used in electromagnetic shielding, sensors, energy storage, and photothermal conversion. Tussah silk (TS) is a unique natural textile raw material and has a unique jewelry luster, natural luxury, and a smooth and comfortable feel.
View Article and Find Full Text PDFBackground: There is continuous demand for safe, effective cosmetic ingredients to treat the signs of aging skin, including fine lines, wrinkles, brown spots, discoloration, laxity, and sagging. While there are a plethora of cosmeceutical peptides, few combine anti-aging and anti-inflammatory benefits with small size.
Methods: Preclinical and clinical studies evaluated the anti-inflammatory properties, anti-aging benefits, and tolerability of acetyl dipeptide-31 amide (AP31), a novel, small, anti-aging micropeptide, to understand its impact as a multifaceted, cosmetic, anti-aging, and anti-inflammaging ingredient.
Int J Biol Macromol
December 2024
College of Textiles & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing Key Laboratory of High Performance Fibers & Products, Shaoxing University, Shaoxing 312000, PR China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, PR China; Zhejiang Tonghui Textile Co., Ltd., Tongxiang 314500, PR China. Electronic address:
In order to solve the problems of high energy consumption, high raw material consumption and poor air permeability of fabrics in the dip-baking method, a simple low-liquid inkjet printing method was used to prepare superhydrophobic cotton fabrics. Inkjet printing technology enables precise control over the printing position and droplet amount, allowing for the creation of superhydrophobic patterns on the fabric surface. ZIF-8 precursor solution and long alkyl chain siloxane were formulated as suitable inks and printed on the surface of the fabric, forming a rough interface with low surface energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!