CarAlg/MMt nanocomposite hydrogels composed of kappa-carrageenan (Car) and sodium alginate (Alg) biopolymers were synthesized by incorporation of sodium montmorillonite (Na-MMt) nanoclay. Acrylamide (AAm), methylenebisacrylamide (MBA), and ammonium persulfate (APS) were used as monomer, crosslinker, and initiator, respectively. The structure and morphology of nanocomposites were characterized by XRD, SEM, and TEM techniques. The XRD results showed exfoliated MMt nanoclay and exfoliation of MMt was confirmed by TEM graph. The resulting nanocomposites were evaluated to remove cationic crystal violet (CV) dye from water. According to data, the adsorption capacity of nanocomposites was enhanced as the clay content was increased. The experimental data were analyzed according to both Langmuir and Freundlich models and experimental maximum adsorption capacity was obtained 88.8 mg g(-1). By studying the effect of pH on the dye adsorption capacity of nanocomposites, it was revealed that the adsorption capacity of nanocomposites was enhanced at acidic pHs as the Na-MMt nanoclay and kappa-carrageenan components were increased.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2013.05.096DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
16
capacity nanocomposites
12
caralg/mmt nanocomposite
8
nanocomposite hydrogels
8
cationic crystal
8
crystal violet
8
na-mmt nanoclay
8
nanocomposites enhanced
8
adsorption
5
nanocomposites
5

Similar Publications

A chitosan-based sensing membrane for on-site and sensitive dual-channel portable detection and efficient adsorption of Pb in groundwater.

Anal Chim Acta

February 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China. Electronic address:

The presence of lead ion (Pb) in groundwater poses a serious risk to human health, even at low levels. Therefore, it is essential to develop a new strategy for both selective detection and effective removal of Pb in groundwater, which has been rarely reported. Here, we developed a multi-functional chitosan-based fluorescent sensing membrane (CM-L/CG) by using a casting method for the sensitive/selective detection and removal of Pb in groundwater.

View Article and Find Full Text PDF

To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.

View Article and Find Full Text PDF

Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications.

Adv Colloid Interface Sci

January 2025

School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.

Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.

View Article and Find Full Text PDF

Discarded floral foam as a source for green preparation of sustainable adsorbent for quick and efficient removal of phenoxyacetic acid herbicides from waters.

J Hazard Mater

January 2025

College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China. Electronic address:

Due to the high toxicity and increasing consumption, efficient removal of phenoxyacetic acid herbicides (PAAHs) from water is imperative. In current study, a new adsorbent was prepared by modifying porous carbon derived from disused floral foam with chitosan (CS) (ACFC). Density functional theory (DFT) calculation uncovered that the amino and hydroxyl groups in the introduced CS played a critical role in the efficient adsorption of ACFC towards PAAHs.

View Article and Find Full Text PDF

This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!