The purpose of this article was to explore an environmentally friendly strategy to synthesis of biomass-based hybrids. Herein, microwave-assisted ionic liquids method was applied to fabricate the hybrids from cellulose and AgX (X=Cl, Br) using cellulose and AgNO3. The ionic liquids act simultaneously as a solvent, a microwave absorber, and a reactant. Ionic liquids provided Cl(-) or Br(-) to the synthesis of AgCl or AgBr crystals; thus no additional reactant is needed. The products are characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The cellulose-Ag/AgCl hybrid and cellulose-Ag/AgBr hybrid were also obtained by using cellulose-AgCl and cellulose-AgBr hybrids as precursors. This environmentally friendly microwave-assisted ionic liquids method is beneficial to the hybrids with high dispersion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2013.05.065 | DOI Listing |
Environ Int
January 2025
Département de Chimie, Université de Montréal, Montreal, QC, Canada. Electronic address:
This study investigated the occurrence of perfluoroalkyl and polyfluoroalkyl substances (PFAS), including anionic, cationic, and zwitterionic compounds, in drinking water. Between 2021-2023, an expanded list of 76 target PFAS was screened in tap water samples mainly from Canada, but also including tap water samples from the Eastern United States, Mexico, South America (Argentina), the Caribbean (Dominican Republic, Cuba), Africa (Algeria, Cameroon, Central African Republic, Morocco, Rwanda, Tunisia), Europe (France, Greece, Italy, Spain, and the United Kingdom) and Asia (Japan, Vietnam, Iran, and Türkiye). An additional ∼ 200 suspect-target PFAS were screened using high-resolution Orbitrap mass spectrometry.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
Sigal peptides have garnered remarkable efficacy in rejuvenating photoaged skin and delaying senescence. Nevertheless, their low solubility and poor permeability bring about a formidable challenge in their transdermal delivery. To address this challenge, bioactive ionic liquids (ILs) synthesized from natural glycyrrhizic acid (GA) and oxymatrine (OMT) with eminent biocompatibility is first prepared.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Fundamental and Applied Sciences Department, Centre of Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia.
Six 1,8-diazabicyclo(5.4.0)undec-7-ene-based ionic liquids (ILs) linked with ethyl or propyl hydroxyl cations, coupled with thiocyanate, dicyanamide and bistriflimide anions, were synthesized through a two-step reaction: quaternization and ion exchange.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, IL, USA.
Room temperature ionic liquids (RTILs) are interesting due to their myriad uses in fields such as catalysis and electrochemistry. Their properties are intimately related to their structures, yet structural understanding is difficult to achieve. This work presents a derivation of an approximate expression for the radial distribution function, ().
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!