Tracking the neuroplastic changes associated with transcranial direct current stimulation: a push for multimodal imaging.

Front Hum Neurosci

Psychology Clinical Neuroscience Center, The University of New Mexico Albuquerque, NM, USA ; Department of Psychology, The University of New Mexico Albuquerque, NM, USA ; Department of Psychiatry, The University of New Mexico School of Medicine Albuquerque, NM, USA ; The Mind Research Network and Lovelace Biomedical and Environmental Research Institute Albuquerque, NM, USA ; Psychiatry Research, New Mexico Raymond G. Murphy VA Healthcare System Albuquerque, NM, USA.

Published: August 2013

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753560PMC
http://dx.doi.org/10.3389/fnhum.2013.00495DOI Listing

Publication Analysis

Top Keywords

tracking neuroplastic
4
neuroplastic changes
4
changes associated
4
associated transcranial
4
transcranial direct
4
direct current
4
current stimulation
4
stimulation push
4
push multimodal
4
multimodal imaging
4

Similar Publications

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.

View Article and Find Full Text PDF

Daily restricted environmental enrichment (REE) refers to limited, structured periods of enrichment aimed at improving both physical and cognitive well-being in animals and humans. This review explores the significance of REE, focusing on studies that investigate 2 and 3 h daily enrichment protocols. Through an analysis of 21 key studies, this paper highlights how even brief periods of REE can lead to substantial improvements in brain plasticity, cognitive function, and stress resilience.

View Article and Find Full Text PDF

A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.

View Article and Find Full Text PDF

Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior.

View Article and Find Full Text PDF

Background: Markerless motion tracking methods have promise for use in a range of domains, including clinical settings where traditional marker-based systems for human pose estimation are not feasible. Artificial intelligence (AI)-based systems can offer a markerless, lightweight approach to motion capture. However, the accuracy of such systems, such as MediaPipe, for tracking fine upper limb movements involving the hand has not been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!