Traditionally, the signaled avoidance (SA) paradigm has been used in an attempt to better understand human phobia. Animal models of this type have been criticized for ineffectively representing phobia. The SA model characterizes phobia as an avoidance behavior by presenting environmental cues, which act as warning signals to an aversive stimulus (ie, shock). Discriminated conditioned punishment (DCP) is an alternative paradigm that characterizes phobia as a choice behavior in which fear serves to punish an otherwise adaptive behavior. The present study quantifies the differences between the paradigms and suggests that DCP offers an alternative paradigm for phobia. Rats trained on either SA or DCP were compared on a number of behavioral variables relevant to human phobia. Results indicate that rats in the DCP paradigm responded significantly earlier to warning signals and were more effective at preventing shocks than rats in the SA paradigm. Implications of this alternative paradigm are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754762PMC
http://dx.doi.org/10.2147/NDT.S49886DOI Listing

Publication Analysis

Top Keywords

alternative paradigm
12
discriminated conditioned
8
conditioned punishment
8
human phobia
8
characterizes phobia
8
warning signals
8
phobia
7
paradigm
6
punishment model
4
model phobia
4

Similar Publications

Uncovering Dynamical Equations of Stochastic Decision Models Using Data-Driven SINDy Algorithm.

Neural Comput

January 2025

Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, BT48 7JL Derry-Londonderry, Northern Ireland, U.K.

Decision formation in perceptual decision making involves sensory evidence accumulation instantiated by the temporal integration of an internal decision variable toward some decision criterion or threshold, as described by sequential sampling theoretical models. The decision variable can be represented in the form of experimentally observable neural activities. Hence, elucidating the appropriate theoretical model becomes crucial to understanding the mechanisms underlying perceptual decision formation.

View Article and Find Full Text PDF

Emerging Artificial Synaptic Devices Based on Organic Semiconductors: Molecular Design, Structure and Applications.

ACS Appl Mater Interfaces

January 2025

The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China.

In modern computing, the Von Neumann architecture faces challenges such as the memory bottleneck, hindering efficient processing of large datasets and concurrent programs. Neuromorphic computing, inspired by the brain's architecture, emerges as a promising alternative, offering unparalleled computational power while consuming less energy. Artificial synaptic devices play a crucial role in this paradigm shift.

View Article and Find Full Text PDF

Background: Dementia has a worldwide prevalence of 55 million people, with 60 to 70% of cases attributed to Alzheimer's Disease (AD). In Antioquia, Colombia, exists a group of families with early-onset AD associated to PSEN1-E280A, a genetic variant with an autosomal dominant inheritance pattern and a penetrance over 99%, which enables the study of individuals across different disease stages. Electroencephalography (EEG) is a non-invasive, portable, and low-cost technique that allows the study of electrophysiological changes associated with neurodegeneration.

View Article and Find Full Text PDF

Background: Pycnanthus angolensis (Welw) Warb., Myristicaceae, is used extensively in ethnomedicine. Numerous health benefits have being ascribed to the use of different parts of P.

View Article and Find Full Text PDF

One-Shot Synthesis of Sym- and Asym-Expanded Heterohelicene Isomers Exhibiting Narrowband Deep-Blue Fluorescence.

Angew Chem Int Ed Engl

January 2025

Tsinghua University, Chemistry, HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China, 100084, Beijing, CHINA.

Expanded heterohelicene composing of alternating linearly and angularly fused multi-resonance (MR) skeleton has garnered wide interest for their promising narrowband emission. Herein, a pair of sym- and asym-expanded heterohelicene isomers are firstly developed by merging boron/oxygen (B/O)-embedded MR triangulene and indolo[3,2,1-jk]carbazole units via one-shot synthesis. Owing to the fully resonating extended helical skeleton, the target heterohelicenes exhibit significantly narrowed spectra bandwidth while emission red-shifting, thus affording deep-blue narrowband emission with peak at around 460 nm, full-width-at-half-maximum (FWHM) of merely 18 nm and near-unity photoluminescence quantum yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!