The distinctive planar polarity of auditory hair cells is evident in the polarized organization of the stereociliary bundle. Mutations in the core planar cell polarity gene Van Gogh-like 2 (Vangl2) result in hair cells that fail to properly orient their stereociliary bundles along the mediolateral axis of the cochlea. The severity of this phenotype is graded along the length of the cochlea, similar to the hair cell differentiation gradient, suggesting that an active refinement process corrects planar polarity phenotypes in Vangl2 knock-out (KO) mice. Because Vangl2 gene deletions are lethal, Vangl2 conditional knock-outs (CKOs) were generated to test this hypothesis. When crossed with Pax2-Cre, Vangl2 is deleted from the inner ear, yielding planar polarity phenotypes similar to Vangl2 KOs at late embryonic stages except that Vangl2 CKO mice are viable and do not have craniorachischisis like Vangl2 KOs. Quantification of planar polarity deficits through postnatal development demonstrates the activity of a Vangl2-independent refinement process that rescues the planar polarity phenotype within 10 d of birth. In contrast, the Pax2-Cre;Vangl2 CKO has profound changes in the shape and distribution of outer pillar cell and Deiters' cell phalangeal processes that are not corrected during the period of planar polarity refinement. Auditory brainstem response analyses of adult mice show a 10-15 dB shift in auditory threshold, and distortion product otoacoustic emission measurements indicate that this mild hearing deficit is of cochlear origin. Together, these data demonstrate a Vangl2-independent refinement mechanism that actively reorients auditory stereociliary bundles and reveals an unexpected role of Vangl2 during supporting cell morphogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756750 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1307-13.2013 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Planar cell polarity (PCP) is an evolutionarily conserved process for development and morphogenesis in metazoans. The well-organized polarity pattern in cells is established by the asymmetric distribution of two core protein complexes on opposite sides of the cell membrane. The Van Gogh-like (VANGL)-PRICKLE (PK) pair is one of these two key regulators; however, their structural information and detailed functions have been unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran.
Intelligent reflecting surfaces (IRS) are valuable tools for enhancing the intelligence of the propagation environment. They have the ability to direct EM Waves to a specific user through beamforming. A significant number of passive elements are integrated into metasurfaces, allowing for their incorporation onto various surfaces such as walls and buildings.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, University of Manchester, Manchester, UK.
Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!