Hypoglossal motoneurons (HNs) control tongue movement and play a role in maintenance of upper airway patency. Defects in these neurons may contribute to the development of sleep apnea and other cranial motor disorders including Rett syndrome (RTT). HNs are modulated by norepinephrine (NE) through α-adrenoceptors. Although postsynaptic mechanisms are known to play a role in this effect, how NE modulates the synaptic transmissions of HNs remains poorly understood. More importantly, the NE system is defective in RTT, while how the defect affects HNs is unknown. Believing that information of NE modulation of HNs may help the understanding of RTT and the design of new therapeutical interventions to motor defects in the disease, we performed these studies in which glycinergic inhibitory postsynaptic currents and intrinsic membrane properties were examined in wild-type and Mecp2(-/Y) mice, a mouse of model of RTT. We found that activation of α1-adrenoceptor facilitated glycinergic synaptic transmission and excited HNs. These effects were mediated by both pre- and postsynaptic mechanisms. The latter effect involved an inhibition of barium-sensitive G protein-dependent K(+) currents. The pre- and postsynaptic modulations of the HNs by α1-adrenoceptors were not only retained in Mecp2-null mice but also markedly enhanced, which appears to be a compensatory mechanism for the deficiencies in NE and GABAergic synaptic transmission. The existence of the endogenous compensatory mechanism is an encouraging finding, as it may allow therapeutical modalities to alleviate motoneuronal defects in RTT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840201 | PMC |
http://dx.doi.org/10.1152/ajpcell.00109.2013 | DOI Listing |
Curr Pain Headache Rep
January 2025
Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
Purpose Of Review: Baclofen, a muscle relaxant that reduces the release of excitatory neurotransmitters in the pre-synaptic neurons stimulating inhibitory neuronal signals in post-synaptic neurons, has been around for over 5 decades. Baclofen is used primarily for spasticity and since 1982, has had a role as an intrathecal agent. In the present investigation, we review research trends and updates on safety and efficacy of intrathecal baclofen (ITB) pumps.
View Article and Find Full Text PDFHear Res
December 2024
Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, United States. Electronic address:
Auditory-nerve fibers (ANFs) from a given cochlear region can vary in threshold sensitivity by up to 60 dB, corresponding to a 1000-fold difference in stimulus level, although each fiber innervates a single inner hair cell (IHC) via a single synapse. ANFs with high-thresholds also have low spontaneous rates (SRs) and synapse on the side of the IHC closer to the modiolus, whereas the low-threshold, high-SR fibers synapse on the side closer to the pillar cells. Prior biophysical work has identified modiolar-pillar differences in both pre- and post-synaptic properties, but a comprehensive explanation for the wide range of sensitivities remains elusive.
View Article and Find Full Text PDFActa Neuropathol
December 2024
Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.
In Alzheimer's disease (AD), the propagation and spreading of CNS tau pathology closely correlates with cognitive decline, positioning tau as an attractive therapeutic target. Amyloid beta (Aβ) has been strongly implicated in driving tau spread, whereas primary tauopathies such as primary age-related tauopathy (PART)-which lack Aβ pathology-exhibit limited tau spread and minimal-to-no cognitive decline. Emerging evidence converges on a trans-synaptic mechanism of tau spread, facilitated by the transfer of misfolded tau aggregates (e.
View Article and Find Full Text PDFα/β-hydrolase domain 6 (ABHD6) is a lipase linked to physiological functions affecting energy metabolism. Brain ABHD6 degrades 2-arachidonoylglycerol and thereby modifies cannabinoid receptor signalling. However, its functional role within mesoaccumbens circuitry critical for motivated behaviour and considerably modulated by endocannabinoids was unknown.
View Article and Find Full Text PDFJ Comput Neurosci
December 2024
Computational Neuroscience Group, Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193, Bellterra, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!