Colloidal Au@ZnO hybrid nanocrystals with linear and branched shape were synthesized. The number of ZnO domains on the Au seeds can be controlled by the solvent mixture. Imidazole-functionalized Au@ZnO hybrid nanocrystals were soluble in water and exhibited a greatly enhanced photocatalytic activity compared to ZnO nanocrystals. The pristine heterodimeric NPs were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-Vis spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr02817hDOI Listing

Publication Analysis

Top Keywords

au@zno hybrid
12
hybrid nanocrystals
12
linear branched
8
controlled synthesis
4
synthesis linear
4
branched au@zno
4
nanocrystals
4
nanocrystals photocatalytic
4
photocatalytic properties
4
properties colloidal
4

Similar Publications

Ternary heterostructure-driven photoinduced electron-hole separation enhanced oxidative stress for triple-negative breast cancer therapy.

J Nanobiotechnology

May 2024

Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e-h) pairs.

View Article and Find Full Text PDF

Modeling light-matter interactions in hybrid plasmonic materials is vital to their widening relevance from optoelectronics to photocatalysis. Here, we explore photoluminescence (PL) from ZnO nanorods (ZNRs) embedded with gold nanoparticles (Au NPs). A progressive increase in Au NP concentration introduces significant structural disorder and defects in ZNRs, which paradoxically quenches defect related visible PL while intensifying the near band edge (NBE) emission.

View Article and Find Full Text PDF

Uric acid is a waste product of the human body where high levels of it or hyperuricemia can lead to gout, kidney disease and other health issues. In this paper, Finite Difference Time Doman (FDTD) simulation method was used to develop a plasmonic optical sensor to detect uric acid with molarity ranging from 0 to 3.0 mM.

View Article and Find Full Text PDF

To improve the gas sensitivity of reduced oxide graphene (rGO)-based NO room-temperature sensors, different contents (0-3 wt%) of rGO, ZnO rods, and noble metal nanoparticles (Au or Ag NPs) were synthesized to construct ternary hybrids that combine the advantages of each component. The prepared ZnO rods had a diameter of around 200 nm and a length of about 2 μm. Au or Ag NPs with diameters of 20-30 nm were loaded on the ZnO-rod/rGO hybrid.

View Article and Find Full Text PDF

One-pot synthesis of colloidal Au/ZnO and Ag/ZnO nanohybrid structures was carried out. The copolymers of maleic acid-poly(N-vinyl-2-pyrrolidone--maleic acid), poly(ethylene--maleic acid), or poly(styrene--maleic acid) were used as templates for the sorption of cations of metals-precursors and stabilization of the resulting nanoheterostructures. Simultaneous production of two types of nanoparticles has been implemented under mild conditions in an aqueous alkaline medium and without additional reagents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!